00 WNAN 2007 New PAGE Template

Total Page:16

File Type:pdf, Size:1020Kb

00 WNAN 2007 New PAGE Template Western North American Naturalist 81(1), © 2021, pp. 54–62 Cold tolerance of mountain stoneflies (Plecoptera: Nemouridae) from the high Rocky Mountains SCOTT HOTALING1,*,†, ALISHA A. SHAH2,†, MICHAEL E. DILLON3, J. JOSEPH GIERSCH4, LUSHA M. TRONSTAD5, DEBRA S. FINN6, H. ARTHUR WOODS2, AND JOANNA L. KELLEY1 1School of Biological Sciences, Washington State University, Pullman, WA 2Division of Biological Sciences, University of Montana, Missoula, MT 3Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 4Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT 5Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY 6Department of Biology, Missouri State University, Springfield, MO ABSTRACT.—How aquatic insects cope with cold temperatures is poorly understood. This is particularly true for high-elevation species, which often experience a seasonal risk of freezing. In the Rocky Mountains, nemourid stoneflies (Plecoptera: Nemouridae) are a major component of mountain stream biodiversity and are typically found in streams fed by glaciers and snowfields, which are rapidly receding due to climate change. Predicting the effects of climate change on mountain stoneflies is difficult because their thermal physiology is largely unknown. We investigated cold tolerance of several alpine stoneflies (Lednia tumana, Lednia tetonica, and Zapada spp.) from the Rocky Mountains, USA. We mea- sured the supercooling point (SCP) and tolerance to ice enclosure of late-instar nymphs collected from a range of thermal regimes. SCPs varied among species and populations, with the lowest SCP measured for nymphs from an alpine pond, which was much more likely to freeze solid in winter than flowing streams. We also show that L. tumana cannot survive being enclosed in ice, even for short periods of time (<3 h) at relatively mild temperatures (−0.5 °C). Our results indi- cate that high-elevation stoneflies at greater risk of freezing may have correspondingly lower SCPs, and despite their common association with glacial meltwater, these stoneflies appear to be living near their lower thermal limits. RESUMEN.—No se comprende bien sobre cómo los insectos acuáticos pueden sobrellevar las temperaturas muy bajas. Esto es particularmente cierto para especies que habitan en elevaciones muy altas y que con frecuencia experi- mentan un riesgo de congelamiento estacional. En las montañas rocosas, las moscas de la roca (Plecóptera: Nemouri- dae), son un componente importante de la biodiversidad de los arroyos de montaña y se encuentran típicamente en arroyos alimentados por glaciares y campos de nieve que, debido al cambio climático, están retrocediendo rápidamente. El predecir los efectos del cambio climático en esta especie de plecópteros es difícil puesto que su fisiología térmica es en gran parte desconocida. Hemos investigado la tolerancia al frío de varias moscas de roca alpinas (Lednia tumana, Lednia tetonica, and Zapada spp.) de las montañas rocosas de los Estados Unidos. Hemos medido un punto de sobreen- friamiento y la tolerancia al hielo en confinamiento de ninfas en estadio tardío colectadas de un rango de regímenes térmicos. Los puntos de sobreenfrimiento variaron entre las especies y las poblaciones, las más bajas en los puntos de sobreenfrimiento fueron las ninfas de un estanque alpino, que era más susceptible a congelarse en el invierno que los arroyos de agua corriente. También encontramos que L. tumana no puede sobrevivir estando encerrada en hielo, aún en pequeños periodos de tiempo (<3 h) en temperaturas relativamente moderadas (−0.5 °C). Nuestros resultados indican que las moscas de roca en elevaciones prominentes con mayor riesgo de congelamiento pueden tener correspondiente- mente un bajo punto de sobreenfrimiento, y a pesar de su asociación común con el agua de deshielo glacial, estas moscas parecen habitar cerca de sus límites bajos térmicos. Freshwater habitats in cold regions typically or more thermally stable microclimates or by experience winter ice cover and freezing tem- modifying local conditions (e.g., through case- peratures, which can be injurious or lethal to making; Danks 1971). Others withstand cold aquatic insects (Danks 2008). Resident species conditions in situ through supercooling (i.e., may avoid extreme cold by moving to warmer maintaining internal water in liquid form below *Corresponding author: [email protected] †Contributed equally SH orcid.org/0000-0002-5965-0986 AAS orcid.org/0000-0002-8454-7905 54 HOTALING ET AL. ♦ COLD TOLERANCE OF MOUNTAIN STONEFLIES 55 its freezing point) or freeze tolerance (Zachari- nymphs; Danks 2008) and for species living assen 1985, Danks 2008, Sinclair et al. 2015). at high latitudes and elevations, where taxa Organisms living in wet environments are likely are most likely to experience freezing. Aquatic to encounter external ice when their body tem- insects generally employ an array of physio- peratures are already at or near freezing. Thus, logical and biochemical strategies to mitigate inoculative freezing, in which contact with cold stress (reviewed by Lencioni et al. 2004). external ice induces the formation of internal These include production of cryoprotectants ice, is likely the main driver of organismal freez- to lower the temperature of internal ice forma- ing in these habitats (Frisbie and Lee 1997). tion (Duman 2015); cryoprotective dehydra- At high elevations, aquatic habitats are typ- tion, in which body water is lost to lower the ically distributed across a mosaic of streams amount available for freezing (e.g., Gehrken and ponds that are fed by an array of hydro- and Sømme 1987); and resistance to anoxic logical sources (e.g., glaciers, perennial snow- conditions induced by ice enclosure (e.g., fields, subterranean ice; Hotaling et al. 2017, Brittain and Nagell 1981). Eggs of the stonefly Brighenti et al. 2021). These habitats remain Arcynopteryx compacta (Perlodidae) from the snow covered for much of the year (Lencioni mountains of southern Norway avoid freez- 2004). Mountain streams do not freeze solid ing by supercooling to −31 °C, a trait medi- because of their steep gradients and year- ated by the loss of approximately two-thirds of round flow, with minimum temperatures often the eggs’ water content (Gehrken and Sømme close to 0 °C in the main channel (Giersch et 1987, Gehrken 1989). Nymphs of another high- al. 2017, Shah et al. 2017, Tronstad et al. latitude stonefly, Nemoura arctica (Nemour - 2020). Resident taxa are therefore predicted to idae), survive freezing to well below 0 °C by experience minimum temperatures of ~0 °C. preventing intracellular ice formation through This prediction rests on the assumption that the production of a xylomannan-based glyco - overwintering nymphs remain in the unfrozen lipid. This glycolipid inhibits inoculative freez- primary stream channel throughout the winter ing through the inactivation of ice nucleating season. However, because of the inherent varia- agents (Walters et al. 2009, 2011). However, it tion in aquatic habitats, nymphs inhabiting is unlikely that glycolipid production repre- different regions of a stream (e.g., littoral zone, sents a singular “magic bullet” that confers bed sediments) may experience subfreezing freeze tolerance in stoneflies, or aquatic insects temperatures, even when the rest of the stream broadly, given the diversity of known freeze- remains unfrozen (Lencioni 2004). Alpine protecting molecules (Toxopeus and Sinclair ponds, in contrast, have little or no flow and 2018). Like N. arctica, high-alpine nemourids are often shallow, making them susceptible to in North America appear to overwinter as freezing solid (Wissinger et al. 2016). As melt- early-instar nymphs (Supplementary Material 1) induced flows are reduced in the future under and may be exposed to a similar risk of freez- climate change (Huss and Hock 2018), head- ing. How they cope with such risks, however, water streams will become shallower with less has not been investigated. flow velocity, raising the risk of freezing in all In this study, we investigated cold toler- seasons for resident organisms. ance across populations of late-instar nymphs Stoneflies (order Plecoptera) inhabit every from at least 3 species—Lednia tumana (Ricker continent except Antarctica and, when pres - 1952), Lednia tetonica Baumann & Call 2010, ent, often represent a substantial portion of and Zapada spp.; Nemouridae—in the north- aquatic biodiversity (DeWalt et al. 2015). After ern Rocky Mountains, USA. For all popula- hatching, stoneflies follow a 2-stage life cycle, tions, we measured the dry supercooling point with development through multiple instars as (SCP), which is the temperature at which an aquatic larval nymphs followed by emergence organism releases latent heat indicative of ice as winged terrestrial adults. Whether develop- formation (Sinclair et al. 2015) in the absence ment occurs in a single year or spans multiple of ice. Enclosure in ice may also be a major seasons, eggs and larvae of high-elevation stone - risk for mountain stoneflies, especially in flies are exposed to near freezing temperatures. slower-flowing shallow streams. Ice enclosure Cold tolerance of stoneflies and of aquatic can cause mortality through inoculative freez- insects in general is not well known, particu- ing, hypoxia, mechanical damage, or a combi- larly for nonadult life stages (i.e., eggs or nation of these factors (Conradi-Larsen and 56 WESTERN NORTH AMERICAN NATURALIST (2021), VOL.
Recommended publications
  • Grand Teton National Park Youngest Range in the Rockies
    GRAND TETON NATIONAL PARK YOUNGEST RANGE IN THE ROCKIES the town of Moran. Others recognized that dudes winter better than cows and began operating dude ranches. The JY and the Bar BC were established in 1908 and 1912, respectively. By the 1920s, dude ranch- ing made significant contributions to the valley’s economy. At this time some local residents real- ized that scenery and wildlife (especially elk) were valuable resources to be conserved rather than exploited. Evolution of a Dream The birth of present-day Grand Teton National Park involved controversy and a struggle that lasted several decades. Animosity toward expanding governmental control and a perceived loss of individual freedoms fueled anti-park senti- ments in Jackson Hole that nearly derailed estab- lishment of the park. By contrast, Yellowstone National Park benefited from an expedient and near universal agreement for its creation in 1872. The world's first national park took only two years from idea to reality; however Grand Teton National Park evolved through a burdensome process requiring three separate governmental Mt. Moran. National Park Service Photo. acts and a series of compromises: The original Grand Teton National Park, set Towering more than a mile above the valley of dazzled fur traders. Although evidence is incon- aside by an act of Congress in 1929, included Jackson Hole, the Grand Teton rises to 13,770 clusive, John Colter probably explored the area in only the Teton Range and six glacial lakes at the feet. Twelve Teton peaks reach above 12,000 feet 1808. By the 1820s, mountain men followed base of the mountains.
    [Show full text]
  • Ent21 3 229 256 Sharova.Pmd
    Russian Entomol. J. 21(3): 229256 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2012 Æèçíåííûå ôîðìû è àäàïòèâíàÿ ðàäèàöèÿ ëè÷èíîê æóæåëèö (Coleoptera: Carabidae) ìèðîâîé ôàóíû Life forms and adaptive radiation of ground beetle larvae (Coleoptera: Carabidae) of the World fauna È.Õ. Øàðîâà, Ê.Â. Ìàêàðîâ I.Kh. Sharova, K.V. Makarov Ìîñêîâñêèé ïåäàãîãè÷åñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, êàôåäðà çîîëîãèè è ýêîëîãèè, óë.Êèáàëü÷è÷à, ä. 6, êîðï. 5, Ìîñêâà 129278, Ðîññèÿ. E-mail: [email protected]; [email protected] Moscow State Pedagogical University, Department of Zoology & Ecology, Kibalchicha str. 6, build. 5, Moscow, 129278 Russia ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ëè÷èíêè, æóæåëèöû, ìîðôîëîãèô, æèçíåííûå ôîðìû, àäàïòàöèè, ñïåêòðû æèçíåííûõ ôîðì, ïàðàëëåëèçì. KEY WORDS: larvae, Carabidae, morphology, life forms, adaptations, life form spectra, parallelism. ÐÅÇÞÌÅ. Ïðåäëîæåíà èåðàðõè÷åñêàÿ ñèñòåìà âî÷íû è ñâîäèëèñü ê îïèñàíèþ îòäåëüíûõ âèäîâ. æèçíåííûõ ôîðì ëè÷èíîê Carabidae ìèðîâîé ôàóíû Îáîáùåíèå ýòèõ ñâåäåíèé ñòàëî âîçìîæíûì ëèøü ñ íà îñíîâå ñèíòåçà îðèãèíàëüíûõ è îïóáëèêîâàííûõ ïîÿâëåíèåì ïåðâûõ ñâîäîê ïî ìîðôîëîãèè è ñèñòå- äàííûõ ïî èõ ìîðôîëîãèè, ñèñòåìàòèêå è ýêîëîãèè. ìàòèêå ëè÷èíîê Carabidae [van Emden, 1942; Jeannel, Íîâàÿ ñèñòåìà æèçíåííûõ ôîðì ëè÷èíîê Carabidae 1941, 1942; Larsson, 1941].  Ðîññèè ïåðâûå îïðåäå- îòëè÷àåòñÿ îò ïðåæíåé [Øàðîâà, 1981] ââåäåíèåì ëèòåëè ëè÷èíîê æóæåëèö áûëè ñîñòàâëåíû Çíîéêî äîïîëíèòåëüíûõ êàòåãîðèé.  ñèñòåìó âêëþ÷åíî 6 [1929], Ãèëÿðîâûì, Øàðîâîé [1954] è Øàðîâîé êëàññîâ è 45 ãðóïï æèçíåííûõ ôîðì, õàðàêåòðèçóþ- [1958, 1964]. Íàêîïëåííûå ñâåäåíèÿ î ëè÷èíêàõ ùèõñÿ êîìïëåêñîì ìîðôîëîãè÷åñêèõ è ïîâåäåí÷åñ- æóæåëèö ïîçâîëèëè èçó÷àòü èõ àäàïòèâíîå ìíîãî- êèõ àäàïòàöèé. Íà îñíîâå íîâîé ñèñòåìû æèçíåííûõ îáðàçèå. Âïåðâûå íåñêîëüêî ìîðôî-ýêîëîãè÷åñêèõ ôîðì ëè÷èíîê Carabidae ïðåäëîæåíà ãèïîòåçà èõ àäàï- òèïîâ ïî÷âîîáèòàþùèõ ëè÷èíîê æóæåëèö âûäåëèë òèâíîé ðàäèàöèè îò ìàëîñïåöèàëèçèðîâàííûõ çîîôà- Ì.Ñ.
    [Show full text]
  • Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
    Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse.
    [Show full text]
  • (Insecta, Coleoptera) В Фауне Арктики. Сообщение 1
    ЗООЛОГИЧЕСКИЙ ЖУРНАЛ, 2014, том 93, № 1, с. 7–44 ЭКОЛОГИЯ И ЗООГЕОГРАФИЯ УДК 595.76 ОТРЯД ЖЕСТКОКРЫЛЫХ (INSECTA, COLEOPTERA) В ФАУНЕ АРКТИКИ. СООБЩЕНИЕ 1. СОСТАВ ФАУНЫ © 2014 г. Ю. И. Чернов1, О. Л. Макарова1, Л. Д. Пенев2, О. А. Хрулёва1 1 Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Москва 119071, Россия e(mail: [email protected] e(mail: oa([email protected] 2 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, София, Болгария e(mail: [email protected] Поступила в редакцию 01.09.2013 г. Жесткокрылые, крупнейший отряд насекомых, в условиях Арктики уступают двукрылым первен ство в полноте освоения среды. На долю Coleoptera приходится около 13% энтомофауны тундровой зоны, однако несколько семейств жуков сохраняют в высоких широтах значительное видовое раз нообразие и существенную ценотическую роль. В этом сообщении мы даем обзор циркумполярной колеоптерофауны Арктики. На основе оригинальных данных, литературных сведений и фондовых коллекционных материалов с использованием экстраполяций и аналогий отмечены особенности таксономического и экологического разнообразия подотрядов, серий и семейств Coleoptera, про анализированы широтнозональное распределение и северные пределы распространения видов, специфика адаптаций и ценотических связей. Ключевые слова: Арктика, жуки, природная зональность, видовое разнообразие, ареал, адаптации. DOI: 10.7868/S004451341401005X Жесткокрылые (Coleoptera) – самый крупный основных широтных трендов параметров их раз отряд насекомых, включающий почти 386500 ви нообразия. дов (Slipinski et al., 2011). На его долю приходится Накопленные к настоящему времени данные почти 40% видов класса. Доминирование этого свидетельствуют о том, что в фауне Арктики на отряда в энтомофауне наиболее отчетливо в теп долю жесткокрылых приходится около 13% видо лых поясах, в тропиках и субтропиках. В умерен вого богатства насекомых, в северной полосе ном поясе жесткокрылые составляют треть видо тундровой зоны их доля снижается до 4%, а в по вого богатства насекомых.
    [Show full text]
  • Vol 4 Part 2. Coleoptera. Carabidae
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON . Vol. IV. Part 2 -HANDBOOKS FOR THE IDENTIFICATION / OF BRITISH INSECT-s COLEOPTERA CARABIDAE By CARL H. LINDROTH LONDON Published by the Society and Sold at its Rooms .p, Queen's Gate, S.W. 7 August I 974- HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows: I. Part 1. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. , 10. Odonata. , 3. Protura. , 11. Thysanoptera. , 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. II. Hemiptera. III. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera : lchneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera : Cyclorrhapha. Volumes II to X will be divided into parts of convenient size, but it is not possible to specifyin advance the taxonomic content of each part. Conciseness and cheapness are main objectives in this series, and each part is the work of a specialist, or of a group of specialists. Although much of the work is based on existing published keys, suitably adapted, much new and original matter is also included.
    [Show full text]
  • Secondary School/ Community College Code List 2014–15
    Secondary School/ Community College Code List 2014–15 The numbers in this code list are used by both the College Board® and ACT® connect to college successTM www.collegeboard.com Alabama - United States Code School Name & Address Alabama 010000 ABBEVILLE HIGH SCHOOL, 411 GRABALL CUTOFF, ABBEVILLE AL 36310-2073 010001 ABBEVILLE CHRISTIAN ACADEMY, PO BOX 9, ABBEVILLE AL 36310-0009 010040 WOODLAND WEST CHRISTIAN SCHOOL, 3717 OLD JASPER HWY, PO BOX 190, ADAMSVILLE AL 35005 010375 MINOR HIGH SCHOOL, 2285 MINOR PKWY, ADAMSVILLE AL 35005-2532 010010 ADDISON HIGH SCHOOL, 151 SCHOOL DRIVE, PO BOX 240, ADDISON AL 35540 010017 AKRON COMMUNITY SCHOOL EAST, PO BOX 38, AKRON AL 35441-0038 010022 KINGWOOD CHRISTIAN SCHOOL, 1351 ROYALTY DR, ALABASTER AL 35007-3035 010026 EVANGEL CHRISTIAN SCHOOL, PO BOX 1670, ALABASTER AL 35007-2066 010028 EVANGEL CLASSICAL CHRISTIAN, 423 THOMPSON RD, ALABASTER AL 35007-2066 012485 THOMPSON HIGH SCHOOL, 100 WARRIOR DR, ALABASTER AL 35007-8700 010025 ALBERTVILLE HIGH SCHOOL, 402 EAST MCCORD AVE, ALBERTVILLE AL 35950 010027 ASBURY HIGH SCHOOL, 1990 ASBURY RD, ALBERTVILLE AL 35951-6040 010030 MARSHALL CHRISTIAN ACADEMY, 1631 BRASHERS CHAPEL RD, ALBERTVILLE AL 35951-3511 010035 BENJAMIN RUSSELL HIGH SCHOOL, 225 HEARD BLVD, ALEXANDER CITY AL 35011-2702 010047 LAUREL HIGH SCHOOL, LAUREL STREET, ALEXANDER CITY AL 35010 010051 VICTORY BAPTIST ACADEMY, 210 SOUTH ROAD, ALEXANDER CITY AL 35010 010055 ALEXANDRIA HIGH SCHOOL, PO BOX 180, ALEXANDRIA AL 36250-0180 010060 ALICEVILLE HIGH SCHOOL, 417 3RD STREET SE, ALICEVILLE AL 35442
    [Show full text]
  • Ecology of Alpine Carabid Beetles (Coleoptera, Carabidae) in a Norwegian Glacier Foreland, with a Special Focus on Claw Wearing to Indicate Relative Age
    © Norwegian Journal of Entomology. 12 December 2017 Ecology of alpine carabid beetles (Coleoptera, Carabidae) in a Norwegian glacier foreland, with a special focus on claw wearing to indicate relative age SIGMUND HÅGVAR, RONNY STEEN & DANIEL FLØ Hågvar, S., Steen, R. & Flø, D. 2017. Ecology of alpine carabid beetles (Coleoptera, Carabidae) in a Norwegian glacier foreland, with a special focus on claw wearing to indicate relative age. Norwegian Journal of Entomology 64, 82–111. Nine species of carabid beetles (Coleoptera, Carabidae) were pitfall-trapped during two years in an alpine glacier foreland of southern Norway. A two-year (biennial) life cycle was documented for Nebria nivalis (Paykull, 1790), N. rufescens (Ström, 1768), and Patrobus septentrionis Dejean, 1828. This was based on the simultaneous hibernation of larvae and adults. In P. septentrionis, both larvae and adults showed a considerable activity beneath snow. A limited larval material of Amara alpina (Paykull, 1790) and A. quenseli (Schönherr, 1806) from the snow-free period indicated larval hibernation. A. quenseli was, however, not synchronized with respect to developmental stages, and its life cycle was difficult to interpret. Measurements of claw lengths in eight species showed a considerable wearing during adult life. The data indicated that some individuals might hibernate a second time and thus experience two egg-laying seasons. Wearing of mandible tooth was not suited as age indictor in Nebria nivalis and N. rufescens, since some individuals hatched with a small tooth. Supplied with literature data, a “niche profile” is presented for each species. The most important ecological factors that contributed to niche segregation were: preference for vegetation-free ground, occurrence along the successional and time gradient, humidity or temperature preference, nocturnal versus diurnal activity, flight ability, food habits, phenology, and the ability to be active under snow.
    [Show full text]
  • A Key to the Genera of the Ground-Beetle Larvae (Coleoptera, Carabidae) of the Paleartic Region
    ISSN 0392-758 X MUSEO REGIONALE DI SCIENZE NATURALI A key to the genera of the Ground-beetle larvae (Coleoptera, Carabidae) of the Paleartic region Kirill V. Makarow ESTRATTO dal Bollettino del Museo Regionale di Scienze Naturali - Torino Volume 12 - N. 1 - 1994 Boll. Mus. reg. Sci. nat. Torino Vol. 12 - N. 1 pp. 221-254 4-5-1994 K.irill V. MAKAR.ow* A key to the genera of the Ground-beetle larvae (Coleoptera, Carabidae) of the Palearctic region INTRODUCTION It is necessary to use the data about the preimaginal stages, especially lar­ vae, forthe successful decision of many taxonomic and ecological questions, but it's rather difficult, because of the little knowledge on the larvae biology and morphology as well as the absence of modern identification keys. So, van Emden's monograph (1942) appears hitherto the most complete generalizing work. The available keys for the USSR (Sharova, 1958, 1964) and Middle Europe carabid larvae (Hurka, 1978; Arndt, 1991) do not contain a number of larval descriptions, published from 1942-1991. Besides, the finemorphologi­ cal investigations ofY. Bousquet and H. Goulet (Goulet, 1979; Bousquet and Goulet, 1984) produced on new opportunities forlarval descriptions. Unfor­ tunately, this method is currently poorly used (Arndt, 1989a, b; Arndt and Hurka, 1990; Bousquet, 1985a, b; 1986; Hurka, 1986; Makarow and Shilenkov, 1991 etc.) and can not be considered as a basis of the practical keys. The present work contains a key for determination of the main Palearctic carabid groups and takes into account most of the works that followed van Emden's monograph.
    [Show full text]
  • Asian Ecological Transect: Evaluation of Biodiversity of Soil and Animal Communities in Central Siberia
    Asian Ecological Transect: Evaluation of Biodiversity of Soil and Animal Communities in Central Siberia L. B. Rybalov T. E. Rossolimo Abstract—Distribution of invertebrate populations along the in the diversity of many organisms have been studied. The Asian Ecological Transect was studied. Attention was paid to soil invertebrate community presents one of the most con- Carabidae distribution as the most diverse and numerous taxon. venient objects for research of this kind due, in part, to the Invertebrate species diversity was correlated with environmental great abundance of invertebrates in any biocenosis and a zonality and with landscape profile, poorness or richness of the great diversity of soil-dwelling taxa. In addition, soil- locality, and the hydrothermic regime of the site. The analyses of dwelling animals are good indicators of environmental Carabidae population distribution along transects on two levels quality and trends (Rybalov and Rossolimo 1996). (zonal and landscape) reveal the real centers of biodiversity for this model insect taxon. Parallel with the increasing of Carabidae diversity from the north to the south (meridional transect) are the Material and Methods ____________ regional, landscape centers of this taxon diversity. Long-term in- Study Sites vestigations in the subzone of middle taiga forest in the central part of the Asian Transect has demonstrated that soil invertebrate This study was conducted in Central Siberian Russia populations of concrete landscape catena involves 30 to 40 percent during seven field seasons from 1985 to 1995, along the of all the fauna of the region. middle and lower Yenisey River. Investigations are a part of the Asian Ecological Transect Project.
    [Show full text]
  • 1 Cold Tolerance of Mountain Stoneflies (Plecoptera: Nemouridae) from the High Rocky 1 Mountains 2 3 Scott Hotaling1,*, Alisha A
    1 Cold tolerance of mountain stoneflies (Plecoptera: Nemouridae) from the high Rocky 2 Mountains 3 4 Scott Hotaling1,*, Alisha A. Shah2,*, Michael E. Dillon3, J. Joseph Giersch4, Lusha M. Tronstad5, 5 Debra S. Finn6, H. Arthur Woods7, and Joanna L. Kelley8 6 7 Affiliations: 8 1 School of Biological Sciences, Washington State University, Pullman, WA, USA 9 2 Division of Biological Sciences, University of Montana, Missoula, MT, USA 10 3 Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 11 Laramie, WY, USA; [email protected] 12 4 U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA; 13 [email protected] 14 5 Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY, USA; 15 [email protected] 16 6 Department of Biology, Missouri State University, Springfield, MO, USA; 17 [email protected] 18 7 Division of Biological Sciences, University of Montana, Missoula, MT, USA; 19 [email protected] 20 8 School of Biological Sciences, Washington State University, Pullman, WA, USA; 21 [email protected] 22 * Contributed equally 23 24 Correspondence: 25 Scott Hotaling, School of Biological Sciences, Washington State University, Pullman, WA, 26 99164; Email: [email protected]; Phone: (828) 507-9950; ORCID: 0000-0002-5965-0986 27 28 Alisha A. Shah, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, 29 USA, Email: [email protected]; Phone: (512) 694-7532; ORCID: 0000-0002-8454-7905 30 31 Running head: Cold tolerance of mountain stoneflies 32 33 This draft manuscript is distributed solely for purposes of scientific peer review.
    [Show full text]
  • Climatic Tolerances and Zoogeography of the Late
    Document generated on 09/23/2021 12:31 p.m. Géographie physique et Quaternaire Climatic tolerances and zoogeography of the late Pleistocene beetle fauna of Beringia La tolérance au climat et la zoogéographie de la faune des coléoptères de la Béringie, à la fin du Pléistocène Klima-Toleranzen und Zoogeographie der Käfer-Fauna der Bering-Insel im späten Pleistozän Scott A. Elias Volume 54, Number 2, 2000 Article abstract The study of fossil beetles has played an important role in the reconstruction of URI: https://id.erudit.org/iderudit/004813ar Beringian paleoenvironments. More than 25 fossil localities have yielded Late DOI: https://doi.org/10.7202/004813ar Pleistocene beetle assemblages, comprising more than 300 species, of which about 147 are predators and scavengers, groups which are suitable for See table of contents paleoclimatic reconstruction. The author has developed climate envelopes (climatic parameters characterizing the modern localities in which species are found) for these species, in order to perform mutual climatic range pale- Publisher(s) otemperature studies. This paper describes the thermal requirements of these beetles, and their zoogeographic history since the interval just prior to the last Les Presses de l'Université de Montréal interglacial period. The fossil assemblages include 14 arctic and alpine species, 66 boreo-arctic species, and 68 boreal and temperate species. The greatest ISSN percentage of species with restricted thermal requirements occurs in the arctic and alpine group. The majority of boreo-arctic and boreal and temperate 0705-7199 (print) species have very broad thermal requirements. Based on modern distribution 1492-143X (digital) and the North American fossil record, it appears that some species resided exclusively in Beringia during the Late Pleistocene.
    [Show full text]
  • Norsk Entomologisk Tidsskrift
    · '. NORSK ENTOMOLOGISK TIDSSKRIFT NORWEG rAN JOURNAL OF ENTOMOLOGY VOLUME 19· NO. 2 . 1972 Erling Hauge: Spiders and Harvestmen from More Eivind Ostbye & Lauritz Somme: The Overwinter­ & Romsdal and Trondelag, Norway 117 ing of Pelophila borealis Payk. l. Survival Rates Finn Erik Klausen: Physocyclus simoni Berland and Cold-Hardiness 165 (Aranea, Pholcidae) New to Norway 123 Karl Erik Zachariassen: Notes on Distribution of har Steine: The Number and Size of Drifting Coleoptera in Norway 169 'ymphs of Ephemeroptera, Chironomidae, and Simuliidae by Day and Night in River Stranda, Short Communications Western Norway 127 John E. Brittain: Brachycercus ~arrisella Curtis Anders Edler & Reidar Mehl: Mites (Acari, Gama­ (Ephemeroptera) New to Norway 171 sina) from Small Mammals in Norway 133 Finn Erik Klausen: Notes on Distribution of Tore Randulff Nielsen: New Records of Norwegian Halorates reprobus (O.P.-Cambridge) (Araneae, Syrphid Flies (Dipt., Syrphidae) 149 Linyphiiidae) in Norway 172 Albert Lillehammer: Notes on the Stonefly Capnia Jan E. Raastad & Reidar Mehl: Night Activity of vidua Klapalek from Fennoscandia 153 Black Flies (Diptera, Simuliidae) in Norway 172 Albert Lillehammer: Notes on the Stonefly Neu­ Alf Bakke: 0stlig nattfly, Poliobrya umovii Ev. fun­ mourn sahlbergi Morton, with a Description of net i Norge 173 the Nymph 157 Karl ErikZachariassen: Osphya bipunctata F .(CoL, Albert LilIehammer: A New Species of the Genus Serropalpidae) New to Norway 174 Nemollra (Plecoptera) from Finnmark, North Bokanmeldelser 175 Norway 161 Erra~m In Index U N I V E SITETSFORLAGET Norsk Entomologisk Tidsskrift Norwegian Journal of Entomology EDITOR Dr. philos. Lauritz S0mme, Zoologisk laboratorium, Universitetet i Oslo, Blindern, Oslo 3, Norway.
    [Show full text]