Engineering the Genome of Minimal Bacteria Using CRISPR/Cas9 Tools Iason Tsarmpopoulos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Earthworm Gut-Associated Microorganisms in the Fate of Prions in Soil
THE ROLE OF EARTHWORM GUT-ASSOCIATED MICROORGANISMS IN THE FATE OF PRIONS IN SOIL Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Taras Jur’evič Nechitaylo aus Krasnodar, Russland 2 Acknowledgement I would like to thank Prof. Dr. Kenneth N. Timmis for his guidance in the work and help. I thank Peter N. Golyshin for patience and strong support on this way. Many thanks to my other colleagues, which also taught me and made the life in the lab and studies easy: Manuel Ferrer, Alex Neef, Angelika Arnscheidt, Olga Golyshina, Tanja Chernikova, Christoph Gertler, Agnes Waliczek, Britta Scheithauer, Julia Sabirova, Oleg Kotsurbenko, and other wonderful labmates. I am also grateful to Michail Yakimov and Vitor Martins dos Santos for useful discussions and suggestions. I am very obliged to my family: my parents and my brother, my parents on low and of course to my wife, which made all of their best to support me. 3 Summary.....................................................………………………………………………... 5 1. Introduction...........................................................................................................……... 7 Prion diseases: early hypotheses...………...………………..........…......…......……….. 7 The basics of the prion concept………………………………………………….……... 8 Putative prion dissemination pathways………………………………………….……... 10 Earthworms: a putative factor of the dissemination of TSE infectivity in soil?.………. 11 Objectives of the study…………………………………………………………………. 16 2. Materials and Methods.............................…......................................................……….. 17 2.1 Sampling and general experimental design..................................................………. 17 2.2 Fluorescence in situ Hybridization (FISH)………..……………………….………. 18 2.2.1 FISH with soil, intestine, and casts samples…………………………….……... 18 Isolation of cells from environmental samples…………………………….………. -
Margaret A. Highland, DVM Washington State University
Bacterial Pneumonia in Sheep, The Domestic – Bighorn Sheep Interface, and Research at ADRU USAHA Committee on Sheep and Goats Providence, RI October 27, 2015 PLC M. A. Highland, DVM, DACVP, PhD candidate PhD Veterinary Training Program USDA-ARS ADRU Veterinary Microbiology and Pathology Washington State University Pullman, WA DS – BHS Interface Issue Captive/penned commingling studies & anecdotal field reports associate BHS and DS contact with BHS pneumonia Removal of DS public land grazing allotments - profound economic impacts Pneumonia continues to afflict BHS herds - despite decades of research and intense management practices Anecdotal field reports also associate DG with BHS pneumonia - pack goat restrictions on public lands DS and BHS Pneumonia DS . Lambs > Adults . Etiology • Polymicrobial (bacteria +/- viruses) or Unimicrobial • Multifactorial (colostrum, air quality, environmental stressors) BHS (wild) . Reports of respiratory disease date back to the 1920’s . All age outbreaks +/- subsequent years of disease in lambs → population-limiting disease . Etiology • Long been debated • Evidence for polymicrobial (bacterial) and multifactorial • Viruses occasionally reported (no current indication for primary role) What do we know about BHS (and DS) pneumonia? Polymicrobial and Multifactorial (the presence of the bacteria in BHS alone does NOT = disease/death) Incompletely understood disease phenomenon DS and BHS pneumonia-associated bacteria Mycoplasma ovipneumoniae (M ovi) Pasteurellaceae (“Pasteurellas”) . Mannheimia haemolytica -
Role of Protein Phosphorylation in Mycoplasma Pneumoniae
Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr. -
Genome Published Outside of SIGS, January – June 2011 Methylovorus Sp
Standards in Genomic Sciences (2011) 4:402-417 DOI:10.4056/sigs.2044675 Genome sequences published outside of Standards in Genomic Sciences, January – June 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of on- going genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publica- tions added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office. Phylum Crenarchaeota “Metallosphaera cuprina” Ar-4, sequence accession CP002656 [1] Thermoproteus uzoniensis 768-20, sequence accession CP002590 [2] “Vulcanisaeta moutnovskia” 768-28, sequence accession CP002529 [3] Phylum Euryarchaeota Methanosaeta concilii, sequence accession CP002565 (chromosome), CP002566 (plasmid) [4] Pyrococcus sp. NA2, sequence accession CP002670 [5] Thermococcus barophilus MP, sequence accession CP002372 (chromosome) and CP002373 plasmid) [6] Phylum Chloroflexi Oscillochloris trichoides DG-6, sequence accession ADVR00000000 [7] Phylum Proteobacteria Achromobacter xylosoxidans A8, sequence accession CP002287 (chromosome), CP002288 (plasmid pA81), and CP002289 -
Examining the Risk of Disease Transmission Between Wild Dall's
Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Prepared for: The Northwest Territories Agricultural Policy Framework and Environment and Natural Resources Government of the Northwest Territories, Canada August 20, 2005 Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Elena Garde 1,2 , Susan Kutz 1,3 , Helen Schwantje 4, Alasdair Veitch 5, Emily Jenkins 1,6 , Brett Elkin 7 1 Research Group for Arctic Parasitology and the Canadian Cooperative Wildlife Health Centre, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4. 2 Associate Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 3 Associate Professor, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, T2N 4N1 Ph: (306) 229-6110 4 Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 5 Supervisor, Wildlife Management, Environment and Natural Resources, Sahtu Region, P.O. Box 130, Norman Wells, NT X0E 0V0, Ph: (867) 587-2786; Fax: (867) 587-2359 [email protected] 6 Wildlife Disease Specialist / Research Scientist, Canadian Wildlife Service, 115 Perimeter Rd. Saskatoon, SK S7N 0X4 (306) 975-5357, (306) 966-7246 7 Disease & Contaminants Specialist, Environment and Natural Resources, 500 – 6102 50 th Ave. -
Genomes Published Outside of SIGS, June
Standards in Genomic Sciences (2011) 5:154-167 DOI:10.4056/sigs.2324675 Genome sequences of Bacteria and Archaea published outside of Standards in Genomic Sciences, June – September 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bib- liometric data for such references to the SIGS editorial office. Phylum Crenarchaeota Phylum Euryarchaeota Pyrococcus yayanosii CH1, sequence accession CP002779 [1] Methanocella paludicola, sequence accession AP011532 [2] Halorhabdus tiamatea, sequence accession AFNT00000000 [3] Thermococcus sp. Strain 4557, sequence accession CP002920 [4] Phylum Chloroflexi Phylum Proteobacteria Ralstonia solanacearum strain Po82, sequence accession CP002819 (chromosome) and CP002820 (megaplasmid) [5 Desulfovibrio alaskensis G20, sequence accession CP000112 [6] Methylophaga aminisulfidivorans MPT, sequence accession AFIG00000000 [7] Acinetobacter sp. P8-3-8, sequence accession AFIE00000000 [8] Sphingomonas strain KC8, sequence accession AFMP01000000 -
A Pilot Study of the Effects of Mycoplasma Ovipneumoniae Exposure on Domestic Lamb Growth And
bioRxiv preprint doi: https://doi.org/10.1101/459628; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: 2 A pilot study of the effects of Mycoplasma ovipneumoniae exposure on domestic lamb growth and 3 performance. 4 5 Thomas E. Besser1*, Jessica Levy1, Melissa Ackerman2, Danielle Nelson1, Kezia Manlove3, Kathleen A. 6 Potter1, Jan Busboom4, Margaret Benson4 7 8 Short title: 9 Sub-clinical Mycoplasma ovipneumoniae infection 10 11 1 Department of Veterinary Microbiology and Pathology, Washington State University College of 12 Veterinary Medicine, Pullman WA, United States of America 13 2 Department of Veterinary Clinical Sciences, Washington State University College of Veterinary 14 Medicine, Pullman WA, United States of America 15 3 Department of Wildland Resources, Utah State University College of Natural Resources, Logan UT, 16 United States of America 17 4 Department of Animal Sciences, Washington State University College of Agricultural, Human, and 18 Natural Resource Sciences, Pullman WA, United States of America. 19 * Corresponding author 20 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/459628; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Mycoplasma Ovipneumoniae Rotter ML, Hirschl AM
RESEARCH LETTERS Figure. Direct examination with dark-field microscopy of specimens from a patient with agammaglobulinemia who had Spiroplasma apis infection, France. A) Helical and motile bacteria in blood culture. B) Elongated and coccoid bacteria in joint fluid. C) Helical and motile bacteria in culture from joint fluid in modified SP4 broth medium. Scale bar indicates 10 µm. than honeybees. The insect stings in this patient are a likely 7. Mueller NJ, Tini GM, Weber A, Gaspert A, Husmann L, gateway of the reported infection. Bloemberg G, et al. Hepatitis from Spiroplasma sp. in an immunocompromised patient. Am J Transplant. 2015;15:2511–6. In summary, clinicians and microbiologists should be http://dx.doi.org/10.1111/ajt.13254 aware of fastidious organisms in atypical infections in im- 8. Lorenz B, Schroeder J, Reischl U. First evidence of an endogenous munocompromised patients. Our findings indicate a need Spiroplasma sp. infection in humans manifesting as unilateral for prolonged culture on specific agar on all joint fluids in cataract associated with anterior uveitis in a premature baby. Graefes Arch Clin Exp Ophthalmol. 2002;240:348–53. patients with agammaglobulinemia and targeted molecular http://dx.doi.org/10.1007/s00417-002-0453-3 methods to identify S. apis organisms. 9. Aquilino A, Masiá M, López P, Galiana AJ, Tovar J, Andrés M, et al. First human systemic infection caused by Spiroplasma. J Clin Microbiol. 2015;53:719–21. http://dx.doi.org/10.1128/JCM.02841-14 Acknowledgments We thank Anne Laurence Thomi Georgelin, who referred the Address for correspondence: Olivier Lortholary, Necker-Enfants Malades patient to the Necker-Pasteur Center for Infectious Diseases and University Hospital, 149 rue de Sevre 75743, Paris CEDEX, France; Tropical Medicine; Valérie Zeller for the management of septic email: [email protected] polyarthritis; and Philippe Lanotte and Marie-Pierre Dubrana, who participated in molecular analysis. -
Attachment 1 .PLOS ONE
Attachment 1 .PLOS ONE CORRECTION Correction: Exposure of bighorn sheep to domestic goats colonized with Mycoplasma ovipneumoniae induces sub-lethal pneumonia Thomas E. Besser, E. Frances Cassirer, Kathleen A. Potter, William J. Foreyt Tn response to queries raised after publication, the authors, the authors’ institution (Office of Research Assurance, Washington State University) and a member of PLOS ONE’s Editorial Board have reviewed the findings in this article, and as a consequence the authors provide an update to the Competing Interests statement and clarifications regarding the results: The competing interests declaration is updated to acknowledge additional sources of fund ing received by the authors. This specific study was supported by funding competitively awarded by the Wild Sheep Foundation and by revenue from the WSU Rocky Crate Endow ment for Wild Sheep Disease Research. Additional research funding for the authors’ bighorn sheep pneumonia-related research has been received from the US Department of Agriculture (including the Animal Plant Health Inspection Service and the US Forest Service), the US Geo logic Survey, numerous chapters and affiliates of the Wild Sheep Foundation, and the WSU Fowler Emerging Infectious Diseases endowment. Regarding the pneumonia diagnosis reported in the article, the authors re-assessed the pri mary data and solicited and received a second opinion from a veterinary pathologist at Wash ington Animal Disease Diagnostic Lab (WADDL) unassociated with the original project. Following this reassessment, the authors confirmed the descriptions and diagnoses as reported in the article, but they noted that the consulted pathologist advised, “some pathologists might describe the histopathologic lesions seen in the least severely affected animal as ‘bronchiolitis’ rather than ‘pneumonia’ due to the preponderance of that lesion in that animal”. -
( 12 ) United States Patent
US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U . -
Genetic Profiling of Mycoplasma Hyopneumoniae Melissa L
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2005 Genetic profiling of Mycoplasma hyopneumoniae Melissa L. Madsen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons, Molecular Biology Commons, and the Veterinary Medicine Commons Recommended Citation Madsen, Melissa L., "Genetic profiling of Mycoplasma hyopneumoniae " (2005). Retrospective Theses and Dissertations. 1793. https://lib.dr.iastate.edu/rtd/1793 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. ® UMI Genetic profiling of Mycoplasma hyopneumoniae by Melissa L. Madsen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Molecular, Cellular and Developmental Biology Program of Study Committee: F. Chris Minion, Major Professor Daniel S. Nettleton Gregory J. Phillips Eileen L. Thacker Eve Wurtele Iowa State University Ames, Iowa 2005 UMI Number: 3200480 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Effectors of Mycoplasmal Virulence 1 2 Virulence Effectors of Pathogenic Mycoplasmas 3 4 Meghan A. May1 And
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 1 Running title: Effectors of mycoplasmal virulence 2 3 Virulence Effectors of Pathogenic Mycoplasmas 4 5 Meghan A. May1 and Daniel R. Brown2 6 7 1Department of Biomedical Sciences, College of Osteopathic Medicine, University of New 8 England, Biddeford ME, USA; 2Department of Infectious Diseases and Immunology, College 9 of Veterinary Medicine, University of Florida, Gainesville FL, USA 10 11 Corresponding author: 12 Daniel R. Brown 13 Department of Infectious Diseases and Immunology, College of Veterinary Medicine, 14 University of Florida, Gainesville FL, USA 15 Tel: +1 352 294 4004 16 Email: [email protected] 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 17 Abstract 18 Members of the genus Mycoplasma and related organisms impose a substantial burden of 19 infectious diseases on humans and animals, but the last comprehensive review of 20 mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now 21 begun to support the discovery and detailed molecular biological characterization of a 22 number of specific mycoplasmal virulence factors. This review covers three categories of 23 defined mycoplasmal virulence effectors: 1) specific macromolecules including the 24 superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell- 25 activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2) 26 the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3) 27 several putative mycoplasmal orthologs of virulence effectors documented in other 28 bacteria.