WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T (51) International Patent Classification: VULIC, Marin; c/o Seres Health, Inc., 161 First Street, A61K 39/02 (2006.01) Suite 1A, Cambridge, MA 02142 (US). (21) International Application Number: (74) Agents: HUBL, Susan, T. et al; Fenwick & West LLP, PCT/US2014/014738 Silicon Valley Center, 801 California Street, Mountain View, CA 94041 (US). (22) International Filing Date: 4 February 2014 (04.02.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/760,584 4 February 2013 (04.02.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/760,585 4 February 2013 (04.02.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/760,574 4 February 2013 (04.02.2013) us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/760,606 4 February 2013 (04.02.2013) us SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/926,918 13 January 2014 (13.01.2014) us TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (71) Applicant: SERES HEALTH, INC. [US/US]; 161 First ZW. Street, Suite 1A, Cambridge, MA 02 142 (US). (84) Designated States (unless otherwise indicated, for every (72) Inventors: VON MALTZAHN, Geoffrey; c/o Seres kind of regional protection available): ARIPO (BW, GH, Health, Inc., 161 First Street, Suite 1A, Cambridge, MA GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 02142 (US). HENN, Matthew, R.; c/o Seres Health, Inc., UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 161 First Street, Suite 1A, Cambridge, MA 02142 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, COOK, David, N.; c/o Seres Health, Inc., 161 First Street, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Suite 1A, Cambridge, MA 02142 (US). BARRY, David, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, A.; c/o Seres Health, Inc., 161 First Street, Suite 1A, Cam TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, bridge, MA 02142 (US). AFEYAN, Noubar, B.; c/o Seres KM, ML, MR, NE, SN, TD, TG). Health, Inc., 161 First Street, Suite 1A, Cambridge, MA Published: 02142 (US). GOODMAN, Brian; c/o Seres Health, Inc., — without international search report and to be republished 161 First Street, Suite 1A, Cambridge, MA 02142 (US). upon receipt of that report (Rule 48.2(g)) LOMBARDO, Mary-Jane; c/o Seres Health, Inc., 161 First Street, Suite 1A, Cambridge, MA 02142 (US). — with sequence listing part of description (Rule 5.2(a)) (54) Title: METHODS OF POPULATING A GASTROINTESTINAL TRACT < FIG. 3 (57) Abstract: Methods and compositions for populating the gastrointestinal tract of a subject are described. Methods include ad o ministering to a subject a therapeutic composition comprising a purified population of spore-forming bacteria produced by providing a fecal material and subjecting the material to a treatment step resulting in purification of spore- forming bacteria. Methods include administering an amount effective to engraft and/or augment in the gastrointestinal tract in order to treat or prevent a dysbiosis in the mammalian subject. TITLE [001] Methods of Populating a Gastrointestinal Tract RELATED APPLICATIONS [002] This application is related to U.S. Provisional Application No. 61/760,584, filed on Feb. 4, 201 3, and to U.S. Provisional Application No. 61/760,585, filed on Feb. 4, 201 3, and to U.S. Provisional Application No. 61/760,574, filed on Feb. 4, 2013, and to U.S. Provisional Application No. 61/760,606, filed on Feb. 4, 201 3, and to U.S. Provisional Application No. 61/926,928, filed on Jan. 13, 2014, which are each incorporated by reference in its entirety. REFERENCE TO A SEQUENCE LISTING [003] This application includes a Sequence Listing submitted electronically as a text file named 25967PCT_CRF_sequencelisting.txt, created on February 4, 2013, with a size of 9 1 1,074 bytes. The sequence listing is incorporated by reference. BACKGROUND [004] Mammals are colonized by microbes in the gastrointestinal (Gl) tract, on the skin, and in other epithelial and tissue niches such as the oral cavity, eye surface and vagina. The gastrointestinal tract harbors an abundant and diverse microbial community. It is a complex system, providing an environment or niche for a community of many different species or organisms, including diverse strains of bacteria. Hundreds of different species may form a commensal community in the Gl tract in a healthy person, and this complement of organisms evolves from the time of birth to ultimately form a functionally mature microbial population by about 3 years of age. Interactions between microbial strains in these populations and between microbes and the host, e.g., the host immune system, shape the community structure, with availability of and competition for resources affecting the distribution of microbes. Such resources may be food, location and the availability of space to grow or a physical structure to which the microbe may attach. For example, host diet is involved in shaping the Gl tract flora. [005] A healthy microbiota provides the host with multiple benefits, including colonization resistance to a broad spectrum of pathogens, essential nutrient biosynthesis and absorption, and immune stimulation that maintains a healthy gut epithelium and an appropriately controlled systemic immunity. In settings of 'dysbiosis' or disrupted symbiosis, microbiota functions can be lost or deranged, resulting in increased susceptibility to pathogens, altered metabolic profiles, or induction of proinflammatory signals that can result in local or systemic inflammation or autoimmunity. Thus, the intestinal microbiota plays a significant role in the pathogenesis of many diseases and disorders, including a variety of pathogenic infections of the gut. For instance, subjects become more susceptible to pathogenic infections when the normal intestinal microbiota has been disturbed due to use of broad-spectrum antibiotics. Many of these diseases and disorders are chronic conditions that significantly decrease a subject's quality of life and can be ultimately fatal. [006] Manufacturers of probiotics have asserted that their preparations of bacteria promote mammalian health by preserving the natural microflora in the Gl tract and reinforcing the normal controls on aberrant immune responses. See, e.g., U.S. Patent No. 8,034,601 . Probiotics, however, have been limited to a very narrow group of genera and a correspondingly limited number of species; as such, they do not adequately replace the missing natural microflora of the Gl tract in many situations. [007] Thus, there is a need for methods of populating a subject's gastrointestinal tract with a wider selection of microbiota in order to alter a dysbiosis. There is also a need to design microbial compositions of isolated bacterial strains with a plurality of beneficial properties based on current understanding of bacterial strains and analysis of the properties that would enhance the utility and commercialization of a microbial composition. [008] Therefore, there exists a need for durable, efficient, and effective compositions and methods for treatment of Gl diseases by way of restoring or enhancing microbiota functions and for addressing these and other shortcomings in the art. SUMMARY OF THE INVENTION [009] Disclosed herein are methods of populating the gastrointestinal tract of a mammalian subject, including the step of orally administering to the mammalian subject an effective amount of a therapeutic composition comprising a purified population of spore-forming bacteria produced by the steps of a) providing a fecal material and b) subjecting the material to a treatment step resulting in purification of spore-forming bacteria, wherein the purified population is present in an amount effective to engraft and/or augment in the gastrointestinal tract in order to treat or prevent a dysbiosis in the mammalian subject. [010] Disclosed herein are methods for populating the gastrointestinal tract of a mammalian subject, comprising the step of orally administering to the subject an effective amount of a therapeutic composition comprising a purified population of spore-forming bacteria in an amount effective to engraft and/or augment in the gastrointestinal tract in order to treat or prevent a dysbiosis in a mammalian subject. [01 1] Also described are therapeutic compositions comprising a purified population of spore-forming bacteria or bacteria having a substantial activity of spore-forming bacteria in an amount effective to populate the gastrointestinal tract of a mammalian subject to whom the therapeutic composition is administered. In some embodiments, the population is effective to i) treat a gastrointestinal dysbiosis, and/or ii) engraft at least one type of bacteria present in the therapeutic composition but not present in a mammalian subject prior to treatment; and/or iii) augment at least one type of bacteria not present in the therapeutic composition in a mammalian subject to whom the therapeutic composition is administered. [012] Also provided are therapeutic compositions comprising a purified population of spore-forming bacteria in an amount effective to populate the gastrointestinal tract of a mammalian subject to whom the therapeutic composition is administered, wherein the purified population is obtained by the steps of a) providing a fecal material comprising spore-forming bacteria and b) subjecting the spore- forming bacteria to a treatment step resulting in purification of the spore-forming bacteria.
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Indoor Microbiome, Environmental Characteristics and Asthma Among Junior High
    Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia Xi Fu1, Dan Norbäck2, Qianqian Yuan3,4, Yanling Li3,4, Xunhua Zhu3,4,Yiqun Deng3,4, Jamal Hisham Hashim5,6, Zailina Hashim7, Yi-Wu Zheng8, Xu-Xin Lai8, Michael Dho Spangfort8, Yu Sun3,4 * 1Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China. 2Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden. 3Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China. 4Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China. 5United Nations University-International Institute for Global Health, Kuala Lumpur, Malaysia, 6Department of Community Health, National University of Malaysia, Kuala Lumpur, Malaysia 7Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia 8Asia Pacific Research, ALK-Abello A/S, Guanzhou, China *To whom corresponds should be addressed: Yu Sun [email protected], Key words: bacteria, fungi, microbial community, absolute quantity, wheezing, breathlessness, adolescence, dampness/visible mold Abstract Indoor microbial diversity and composition are suggested to affect the prevalence and severity of asthma, but no microbial association study has been conducted in tropical countries. In this study, we collected floor dust and environmental characteristics from 21 classrooms, and health data related to asthma symptoms from 309 students, in junior high schools in Johor Bahru, Malaysia.
    [Show full text]
  • Tessaracoccus Arenae Sp. Nov., Isolated from Sea Sand
    TAXONOMIC DESCRIPTION Thongphrom et al., Int J Syst Evol Microbiol 2017;67:2008–2013 DOI 10.1099/ijsem.0.001907 Tessaracoccus arenae sp. nov., isolated from sea sand Chutimon Thongphrom,1 Jong-Hwa Kim,1 Nagamani Bora2,* and Wonyong Kim1,* Abstract A Gram-stain positive, non-spore-forming, non-motile, facultatively anaerobic bacterial strain, designated CAU 1319T, was isolated from sea sand and the strain’s taxonomic position was investigated using a polyphasic approach. Strain CAU 1319T grew optimally at 30 C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain CAU 1319T belongs to the genus Tessaracoccus, and is closely related to Tessaracoccus lapidicaptus IPBSL-7T (similarity 97.69 %), Tessaracoccus bendigoensis Ben 106T (similarity 95.64 %) and Tessaracoccus T T flavescens SST-39 (similarity 95.84 %). Strain CAU 1319 had LL-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-9 (H4) as the predominant menaquinone, and anteiso-C15 : 0 as the major fatty acid. The polar lipids consisted of phosphatidylglycerol, phosphatidylinositol, two unidentified aminolipids, three unidentified phospholipids and one unidentified glycolipid. Predominant polyamines were spermine and spermidine. The DNA–DNA hybridization value between strain CAU 1319T and T. lapidicaptus IPBSL-7T was 24 %±0.2. The DNA G+C content of the novel strain was 69.5 mol %. On the basis of phenotypic and chemotaxonomic properties, as well as phylogenetic relatedness, strain CAU 1319Tshould be classified as a novel species of the genus Tessaracoccus, for which the name Tessaracoccus arenae sp.
    [Show full text]
  • Margaret A. Highland, DVM Washington State University
    Bacterial Pneumonia in Sheep, The Domestic – Bighorn Sheep Interface, and Research at ADRU USAHA Committee on Sheep and Goats Providence, RI October 27, 2015 PLC M. A. Highland, DVM, DACVP, PhD candidate PhD Veterinary Training Program USDA-ARS ADRU Veterinary Microbiology and Pathology Washington State University Pullman, WA DS – BHS Interface Issue Captive/penned commingling studies & anecdotal field reports associate BHS and DS contact with BHS pneumonia Removal of DS public land grazing allotments - profound economic impacts Pneumonia continues to afflict BHS herds - despite decades of research and intense management practices Anecdotal field reports also associate DG with BHS pneumonia - pack goat restrictions on public lands DS and BHS Pneumonia DS . Lambs > Adults . Etiology • Polymicrobial (bacteria +/- viruses) or Unimicrobial • Multifactorial (colostrum, air quality, environmental stressors) BHS (wild) . Reports of respiratory disease date back to the 1920’s . All age outbreaks +/- subsequent years of disease in lambs → population-limiting disease . Etiology • Long been debated • Evidence for polymicrobial (bacterial) and multifactorial • Viruses occasionally reported (no current indication for primary role) What do we know about BHS (and DS) pneumonia? Polymicrobial and Multifactorial (the presence of the bacteria in BHS alone does NOT = disease/death) Incompletely understood disease phenomenon DS and BHS pneumonia-associated bacteria Mycoplasma ovipneumoniae (M ovi) Pasteurellaceae (“Pasteurellas”) . Mannheimia haemolytica
    [Show full text]
  • Pentachlorophenol Degradation by Janibacter Sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 296472, 9 pages http://dx.doi.org/10.1155/2014/296472 Research Article Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land Amel Khessairi,1,2 Imene Fhoula,1 Atef Jaouani,1 Yousra Turki,2 Ameur Cherif,3 Abdellatif Boudabous,1 Abdennaceur Hassen,2 and Hadda Ouzari1 1 UniversiteTunisElManar,Facult´ e´ des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolecules´ Actives, Campus Universitaire, 2092 Tunis, Tunisia 2 Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopoleˆ Borj-Cedria,´ B.P. 273, 8020 Soliman, Tunisia 3 Universite´ de Manouba, Institut Superieur´ de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia Correspondence should be addressed to Hadda Ouzari; [email protected] Received 1 May 2014; Accepted 17 August 2014; Published 17 September 2014 Academic Editor: George Tsiamis Copyright © 2014 Amel Khessairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy.
    [Show full text]
  • Engineering the Genome of Minimal Bacteria Using CRISPR/Cas9 Tools Iason Tsarmpopoulos
    Engineering the genome of minimal bacteria using CRISPR/Cas9 tools Iason Tsarmpopoulos To cite this version: Iason Tsarmpopoulos. Engineering the genome of minimal bacteria using CRISPR/Cas9 tools. Mi- crobiology and Parasitology. Université de Bordeaux, 2017. English. NNT : 2017BORD0787. tel- 01834971 HAL Id: tel-01834971 https://tel.archives-ouvertes.fr/tel-01834971 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE Science de la vie et de la Santé SPÉCIALITÉ Microbiologie and Immunologie Par Iason TSARMPOPOULOS Ingénierie de génome de bactéries minimales par des outils CRISPR/Cas9 Sous la direction de : Monsieur Pascal SIRAND-PUGNET Soutenue le jeudi 07 décembre 2017 à 14h00 Lieu : INRA, 71 avenue Edouard Bourlaux 33882 Villenave d'Ornon salle Amphithéâtre Josy et Colette Bové Membres du jury : Mme Cécile BEBEAR Université de Bordeaux et CHU de Bordeaux Président Mme Florence TARDY Anses-Laboratoire de Lyon Rapporteur M. Matthieu JULES Institut Micalis, INRA and AgroParisTech Rapporteur M. David BIKARD Institut Pasteur Examinateur M. Fabien DARFEUILLE INSERM U1212 - CNRS UMR 5320 Invité Mme Carole LARTIGUE-PRAT INRA - Université de Bordeaux Invité M.
    [Show full text]
  • 1587714682 277 2.Pdf
    Systematic and Applied Microbiology 42 (2019) 107–116 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity? ∗ Tomazˇ Accetto , Gorazd Avgustinˇ University of Ljubljana, Biotechnical faculty, Animal Science Department, Groblje 3, 1230 Domzale,ˇ Slovenia a r t i c l e i n f o a b s t r a c t Article history: Although the Prevotella are commonly observed in high shares in the mammalian hindgut and rumen Received 2 August 2018 studies using NGS approach, the knowledge on their actual role, though postulated to lie in soluble fibre Received in revised form 2 October 2018 degradation, is scarce. Here we analyse in total 23, more than threefold of hitherto known rumen and Accepted 3 October 2018 hindgut Prevotella species and show that rumen/hindgut Prevotella generally possess extensive reper- toires of polysaccharide utilization loci (PULs) and carbohydrate active enzymes targeting various plant Keywords: polysaccharides. These PUL repertoires separate analysed Prevotella into generalists and specialists yet a Prevotella finer diversity among generalists is evident too, both in range of substrates targeted and in PUL combi- Rumen Hindgut nations targeting the same broad substrate classes. Upon evaluation of the shares of species analysed in this study in rumen metagenomes we found firstly, that they contributed significantly to total Prevotella Polysaccharide utilization locus CAZYme abundance though much of rumen Prevotella diversity may still be unknown. Secondly, the hindgut Pre- Metagenome votella species originally isolated in pigs and humans occasionally dominated among the Prevotella with surprisingly high metagenome read shares and were consistently found in rumen metagenome samples from sites as apart as New Zealand and Scotland.
    [Show full text]
  • Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
    Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes.
    [Show full text]
  • Association Between Hereditary Hemochromatosis and Hepatocellular Carcinoma: a Comprehensive Review
    Jayachandran et al. Hepatoma Res 2020;6:8 Hepatoma Research DOI: 10.20517/2394-5079.2019.35 Review Open Access Association between hereditary hemochromatosis and hepatocellular carcinoma: a comprehensive review Aparna Jayachandran1,2, Ritu Shrestha1,2, Kim R. Bridle1,2, Darrell H. G. Crawford1,2 1The University of Queensland, Faculty of Medicine, Brisbane, QLD 4006, Australia. 2Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia. Correspondence to: Prof. Darrell H. G. Crawford, Gallipoli Medical Research Institute, The University of Queensland, Faculty of Medicine, Lower Lobby Level, Administration Building, Greenslopes Private Hospital, Greenslopes, QLD 4120, Australia. E-mail: [email protected] How to cite this article: Jayachandran A, Shrestha R, Bridle KR, Crawford DHG. Association between hereditary hemochromatosis and HCC: a comprehensive review. Hepatoma Res 2020;6:8. http://dx.doi.org/10.20517/2394-5079.2019.35 Received: 15 Nov 2019 First Decision: 10 Dec 2019 Revised: 4 Feb 2020 Accepted: 18 Feb 2020 Published: 6 Mar 2020 Science Editor: Guang-Wen Cao Copy Editor: Jing-Wen Zhang Production Editor: Tian Zhang Abstract Hepatocellular carcinoma (HCC) is a significant global health problem with high morbidity and mortality. Its incidence is increasing exponentially worldwide with a close overlap between annual incidence and death rates. Even though significant advances have been made in HCC treatment, fewer than 20% of patients with HCC are suitable for potentially curative treatment. Hereditary hemochromatosis (HH) is an important genetic risk factor for HCC. HH is an autosomal recessive disorder of iron metabolism, characterised by elevated iron deposition in most organs including the liver, leading to progressive organ dysfunction.
    [Show full text]
  • Nr EC Aandoening Orphacode Patiëntenorganisatie Vragenlijst
    Nr EC Aandoening Orphacode Patiëntenorganisatie Vragenlijst P PNR ingediend? G-24-12 ABeta amyloidosis, Dutch type ORPHA:100006 Vereniging HCHWA-D Nee P 14 G-8-7 Tubular duplication of the esophagus ORPHA:100048 Vereniging voor Ouderen en Kinderen met Slokdarmafsluiting (VOKS) Ja P 124 G-17-10 Neurogenic thoracic outlet syndrome ORPHA:100073 RSI-vereniging Nee P 305 G-11-43 Laryngeal neuroendocrine tumor ORPHA:100083 St NET-Groep Ja P 62 G-11-43 Middle ear neuroendocrine tumor ORPHA:100084 St NET-Groep Ja P 62 G-11-1 Thyroid tumor ORPHA:100087 Schildklier Organisatie NL (SON) Ja P 60 G-11-13 Thyroid tumor ORPHA:100087 Schildklier Organisatie NL (SON) Ja P 60 G-11-35 Thyroid Tumor ORPHA:100087 Schildklier Organisatie NL (SON) Ja P 60 G-11-13 Thyroid carcinoma ORPHA:100088 Schildklier Organisatie NL (SON) Ja P 60 G-11-35 Thyroid carcinoma ORPHA:100088 Schildklier Organisatie NL (SON) Ja P 60 G-3-11 Thyroid carcinoma ORPHA:100088 Schildklier Organisatie NL (SON) Ja P 60 G-3-17 Thyroid carcinoma ORPHA:100088 Schildklier Organisatie NL (SON) Ja P 60 G-3-13 Adrenal/paraganglial tumor ORPHA:100091 Nlse Vereniging voor patiënten met Paragangliomen (NVPG) Ja P 29 G-3-13 Adrenal/paraganglial tumor ORPHA:100091 Bijniervereniging (NVACP) Nee P 64 G-3-2 Adrenal/paraganglial tumor ORPHA:100091 Nlse Vereniging voor Patiënten met Paragangliomen (NVPG) Ja P 29 G-3-2 Adrenal/paraganglial tumor ORPHA:100091 Bijniervereniging (NVACP) Nee P 64 G-11-29 Gastroenteropancreatic neuroendocrine neoplasm ORPHA:100092 St NET-Groep Ja P 62 G-11-27 Thymic tumor ORPHA:100100
    [Show full text]
  • Raineyella Antarctica Gen. Nov., Sp. Nov., a Psychrotolerant, D-Amino
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5529–5536 DOI 10.1099/ijsem.0.001552 Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, D-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere Elena Vladimirovna Pikuta,1 Rodolfo Javier Menes,2 Alisa Michelle Bruce,3† Zhe Lyu,4 Nisha B. Patel,5 Yuchen Liu,6 Richard Brice Hoover,1 Hans-Jürgen Busse,7 Paul Alexander Lawson5 and William Barney Whitman4 Correspondence 1Department of Mathematical, Computer and Natural Sciences, Athens State University, Athens, Elena Vladimirovna Pikuta AL 35611, USA [email protected] 2Catedra de Microbiología, Facultad de Química y Facultad de Ciencias, UDELAR, 11800 or Montevideo, Uruguay [email protected] 3Biology Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 4Microbiology Department, University of Georgia in Athens, Athens, GA 30602, USA 5Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 7Institut für Mikrobiologie - Veterinarmedizinische€ Universitat€ Wien, A-1210 Wien, Austria A Gram-stain-positive bacterium, strain LZ-22T, was isolated from a rhizosphere of moss Leptobryum sp. collected at the shore of Lake Zub in Antarctica. Cells were motile, straight or pleomorphic rods with sizes of 0.6–1.0Â3.5–10 µm. The novel isolate was a facultatively anaerobic, catalase-positive, psychrotolerant mesophile. Growth was observed at 3–41 C (optimum 24–28 C), with 0–7 % (w/v) NaCl (optimum 0.25 %) and at pH 4.0–9.0 (optimum pH 7.8). The quinone system of strain LZ-22T possessed predominately menaquinone MK-9(H4).
    [Show full text]
  • Examining the Risk of Disease Transmission Between Wild Dall's
    Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Prepared for: The Northwest Territories Agricultural Policy Framework and Environment and Natural Resources Government of the Northwest Territories, Canada August 20, 2005 Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Elena Garde 1,2 , Susan Kutz 1,3 , Helen Schwantje 4, Alasdair Veitch 5, Emily Jenkins 1,6 , Brett Elkin 7 1 Research Group for Arctic Parasitology and the Canadian Cooperative Wildlife Health Centre, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4. 2 Associate Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 3 Associate Professor, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, T2N 4N1 Ph: (306) 229-6110 4 Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 5 Supervisor, Wildlife Management, Environment and Natural Resources, Sahtu Region, P.O. Box 130, Norman Wells, NT X0E 0V0, Ph: (867) 587-2786; Fax: (867) 587-2359 [email protected] 6 Wildlife Disease Specialist / Research Scientist, Canadian Wildlife Service, 115 Perimeter Rd. Saskatoon, SK S7N 0X4 (306) 975-5357, (306) 966-7246 7 Disease & Contaminants Specialist, Environment and Natural Resources, 500 – 6102 50 th Ave.
    [Show full text]