Mycoplasma Ovipneumoniae Rotter ML, Hirschl AM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Margaret A. Highland, DVM Washington State University
Bacterial Pneumonia in Sheep, The Domestic – Bighorn Sheep Interface, and Research at ADRU USAHA Committee on Sheep and Goats Providence, RI October 27, 2015 PLC M. A. Highland, DVM, DACVP, PhD candidate PhD Veterinary Training Program USDA-ARS ADRU Veterinary Microbiology and Pathology Washington State University Pullman, WA DS – BHS Interface Issue Captive/penned commingling studies & anecdotal field reports associate BHS and DS contact with BHS pneumonia Removal of DS public land grazing allotments - profound economic impacts Pneumonia continues to afflict BHS herds - despite decades of research and intense management practices Anecdotal field reports also associate DG with BHS pneumonia - pack goat restrictions on public lands DS and BHS Pneumonia DS . Lambs > Adults . Etiology • Polymicrobial (bacteria +/- viruses) or Unimicrobial • Multifactorial (colostrum, air quality, environmental stressors) BHS (wild) . Reports of respiratory disease date back to the 1920’s . All age outbreaks +/- subsequent years of disease in lambs → population-limiting disease . Etiology • Long been debated • Evidence for polymicrobial (bacterial) and multifactorial • Viruses occasionally reported (no current indication for primary role) What do we know about BHS (and DS) pneumonia? Polymicrobial and Multifactorial (the presence of the bacteria in BHS alone does NOT = disease/death) Incompletely understood disease phenomenon DS and BHS pneumonia-associated bacteria Mycoplasma ovipneumoniae (M ovi) Pasteurellaceae (“Pasteurellas”) . Mannheimia haemolytica -
Fitzhenry Yields 2016.Pdf
Stellenbosch University https://scholar.sun.ac.za ii DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii GENERAL ABSTRACT Fallow deer (Dama dama), although not native to South Africa, are abundant in the country and could contribute to domestic food security and economic stability. Nonetheless, this wild ungulate remains overlooked as a protein source and no information exists on their production potential and meat quality in South Africa. The aim of this study was thus to determine the carcass characteristics, meat- and offal-yields, and the physical- and chemical-meat quality attributes of wild fallow deer harvested in South Africa. Gender was considered as a main effect when determining carcass characteristics and yields, while both gender and muscle were considered as main effects in the determination of physical and chemical meat quality attributes. Live weights, warm carcass weights and cold carcass weights were higher (p < 0.05) in male fallow deer (47.4 kg, 29.6 kg, 29.2 kg, respectively) compared with females (41.9 kg, 25.2 kg, 24.7 kg, respectively), as well as in pregnant females (47.5 kg, 28.7 kg, 28.2 kg, respectively) compared with non- pregnant females (32.5 kg, 19.7 kg, 19.3 kg, respectively). -
Engineering the Genome of Minimal Bacteria Using CRISPR/Cas9 Tools Iason Tsarmpopoulos
Engineering the genome of minimal bacteria using CRISPR/Cas9 tools Iason Tsarmpopoulos To cite this version: Iason Tsarmpopoulos. Engineering the genome of minimal bacteria using CRISPR/Cas9 tools. Mi- crobiology and Parasitology. Université de Bordeaux, 2017. English. NNT : 2017BORD0787. tel- 01834971 HAL Id: tel-01834971 https://tel.archives-ouvertes.fr/tel-01834971 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE Science de la vie et de la Santé SPÉCIALITÉ Microbiologie and Immunologie Par Iason TSARMPOPOULOS Ingénierie de génome de bactéries minimales par des outils CRISPR/Cas9 Sous la direction de : Monsieur Pascal SIRAND-PUGNET Soutenue le jeudi 07 décembre 2017 à 14h00 Lieu : INRA, 71 avenue Edouard Bourlaux 33882 Villenave d'Ornon salle Amphithéâtre Josy et Colette Bové Membres du jury : Mme Cécile BEBEAR Université de Bordeaux et CHU de Bordeaux Président Mme Florence TARDY Anses-Laboratoire de Lyon Rapporteur M. Matthieu JULES Institut Micalis, INRA and AgroParisTech Rapporteur M. David BIKARD Institut Pasteur Examinateur M. Fabien DARFEUILLE INSERM U1212 - CNRS UMR 5320 Invité Mme Carole LARTIGUE-PRAT INRA - Université de Bordeaux Invité M. -
Caribou (Barren-Ground Population) Rangifer Tarandus
COSEWIC Assessment and Status Report on the Caribou Rangifer tarandus Barren-ground population in Canada THREATENED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Caribou Rangifer tarandus, Barren-ground population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 123 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Anne Gunn, Kim Poole, and Don Russell for writing the status report on Caribou (Rangifer tarandus), Barren-ground population, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Justina Ray, Co-chair of the COSEWIC Terrestrial Mammals Specialist Subcommittee, with the support of the members of the Terrestrial Mammals Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Caribou (Rangifer tarandus), population de la toundra, au Canada. Cover illustration/photo: Caribou — Photo by A. Gunn. Her Majesty the Queen in Right of Canada, 2016. Catalogue No. CW69-14/746-2017E-PDF ISBN 978-0-660-07782-6 COSEWIC Assessment Summary Assessment Summary – November 2016 Common name Caribou - Barren-ground population Scientific name Rangifer tarandus Status Threatened Reason for designation Members of this population give birth on the open arctic tundra, and most subpopulations (herds) winter in vast subarctic forests. -
Gallina & Mandujano
Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 2 (2):116-127, 2009 Special issue: introduction Research on ecology, conservation and management of wild ungulates in Mexico Sonia Gallina1 and Salvador Mandujano1 1 Departamento de Biodiversidad y Ecología Animal, Instituto de Ecología A. C., km. 2.5 Carret. Ant. Coatepec No. 351, Congregación del Haya, Xalapa 91070, Ver. México. E‐mail: <[email protected]>; <[email protected]> Abstract This special issue of Tropical Conservation Science provides a synopsis of nine of the eleven presentations on ungulates presented at the Symposium on Ecology and Conservation of Ungulates in Mexico during the Mexican Congress of Ecology held in November 2008 in Merida, Yucatan. Of the eleven species of wild ungulates in Mexico (Baird´s tapir Tapirus bairdii, pronghorn antelope Antilocapra americana, American bison Bison bison, bighorn sheep Ovis canadensis, elk Cervus canadensis, red brocket deer Mazama temama, Yucatan brown brocket Mazama pandora, mule deer Odocoileus hemionus, white-tailed deer Odocoileus virginianus, white-lipped peccary Tayassu pecari and collared peccary Pecari tajacu), studies which concern four of these species are presented: Baird’s tapir and the white lipped peccary, which are tropical species in danger of extinction; the bighorn sheep, of high value for hunting in the north-west; and the white-tailed deer, the most studied ungulate in Mexico due to its wide distribution in the country and high hunting and cultural value. In addition, two studies of exotic species, wild boar (Sus scrofa) and red deer (Cervus elaphus), are presented. Issues addressed in these studies are: population estimates, habitat use, evaluation of UMA (Spanish acronym for ‘Wildlife Conservation, Management and Sustainable Utilization Units’) and ANP (Spanish acronym for ‘Natural Protected Areas’) to sustain minimum viable populations, and the effect of alien species in protected areas and UMA, all of which allow an insight into ungulate conservation and management within the country. -
Sexual Selection and Extinction in Deer Saloume Bazyan
Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8 -
Examining the Risk of Disease Transmission Between Wild Dall's
Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Prepared for: The Northwest Territories Agricultural Policy Framework and Environment and Natural Resources Government of the Northwest Territories, Canada August 20, 2005 Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Elena Garde 1,2 , Susan Kutz 1,3 , Helen Schwantje 4, Alasdair Veitch 5, Emily Jenkins 1,6 , Brett Elkin 7 1 Research Group for Arctic Parasitology and the Canadian Cooperative Wildlife Health Centre, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4. 2 Associate Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 3 Associate Professor, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, T2N 4N1 Ph: (306) 229-6110 4 Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 5 Supervisor, Wildlife Management, Environment and Natural Resources, Sahtu Region, P.O. Box 130, Norman Wells, NT X0E 0V0, Ph: (867) 587-2786; Fax: (867) 587-2359 [email protected] 6 Wildlife Disease Specialist / Research Scientist, Canadian Wildlife Service, 115 Perimeter Rd. Saskatoon, SK S7N 0X4 (306) 975-5357, (306) 966-7246 7 Disease & Contaminants Specialist, Environment and Natural Resources, 500 – 6102 50 th Ave. -
Phylogeny, Evolution, and Diversity of Old World Telemetacarpal Deer
Phylogeny, evolution, and diversity of Old World telemetacarpal deer (Capreolinae, Cervidae, Mammalia) Roman CROITOR (Chișinău/Aix‐en‐Provence) introduction • Modern telemetacarpal deer (subfamily Capreolinae) are represented by few very specialized Old World forms (1, Alces alces; 2, Rangifer tarandus; 3, Capreolus capreolus; 4, Hydropotes inermis) and a diversified radiationof New World telemetacarpal deer. The known paleontological record of Capreolinae in Eurasia is rather scarce and for some genera (Procapreolus) is traced from the Late Miocene, while other lineages appear only in the Early Pleistocene and already represented by very specialized forms (Alces). Some poor Pliocene remains of Capreolus and of a form similar to Alces are reported by Vislobokova et al. (1995) from the Late Pliocene of Baikal Area. Another interesting recent finding is Rangifer sp. from the Early Pleistocene of Western Siberia that maintains the primitive orientation of pedicles (Bondarev et al., 2017). Those sparse findings suggest that Capreolines continuously were present in the middle latitudes of Eurasia, but their fossil remains apparently are misunderstood. • The Miocene record of Capreolinae is insufficiently known and many of cervid forms and species are poorly understood. This is the case of Metadicrocerus variabilis, Cervavitus tarakliensis, and Pliocervus matheroni (traditionally are placed in the tribe Pliocervini of the subfamily Cervinae) that are believed to have the intermediate phylogenetic position between modern Cervinae (plesiometacarpal -
Genomes Published Outside of SIGS, June
Standards in Genomic Sciences (2011) 5:154-167 DOI:10.4056/sigs.2324675 Genome sequences of Bacteria and Archaea published outside of Standards in Genomic Sciences, June – September 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bib- liometric data for such references to the SIGS editorial office. Phylum Crenarchaeota Phylum Euryarchaeota Pyrococcus yayanosii CH1, sequence accession CP002779 [1] Methanocella paludicola, sequence accession AP011532 [2] Halorhabdus tiamatea, sequence accession AFNT00000000 [3] Thermococcus sp. Strain 4557, sequence accession CP002920 [4] Phylum Chloroflexi Phylum Proteobacteria Ralstonia solanacearum strain Po82, sequence accession CP002819 (chromosome) and CP002820 (megaplasmid) [5 Desulfovibrio alaskensis G20, sequence accession CP000112 [6] Methylophaga aminisulfidivorans MPT, sequence accession AFIG00000000 [7] Acinetobacter sp. P8-3-8, sequence accession AFIE00000000 [8] Sphingomonas strain KC8, sequence accession AFMP01000000 -
A Pilot Study of the Effects of Mycoplasma Ovipneumoniae Exposure on Domestic Lamb Growth And
bioRxiv preprint doi: https://doi.org/10.1101/459628; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: 2 A pilot study of the effects of Mycoplasma ovipneumoniae exposure on domestic lamb growth and 3 performance. 4 5 Thomas E. Besser1*, Jessica Levy1, Melissa Ackerman2, Danielle Nelson1, Kezia Manlove3, Kathleen A. 6 Potter1, Jan Busboom4, Margaret Benson4 7 8 Short title: 9 Sub-clinical Mycoplasma ovipneumoniae infection 10 11 1 Department of Veterinary Microbiology and Pathology, Washington State University College of 12 Veterinary Medicine, Pullman WA, United States of America 13 2 Department of Veterinary Clinical Sciences, Washington State University College of Veterinary 14 Medicine, Pullman WA, United States of America 15 3 Department of Wildland Resources, Utah State University College of Natural Resources, Logan UT, 16 United States of America 17 4 Department of Animal Sciences, Washington State University College of Agricultural, Human, and 18 Natural Resource Sciences, Pullman WA, United States of America. 19 * Corresponding author 20 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/459628; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Karyotype Relationships Among Selected Deer Species and Cattle Revealed by Bovine FISH Probes
RESEARCH ARTICLE Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes Jan Frohlich1*, Svatava Kubickova1, Petra Musilova1, Halina Cernohorska1, Helena Muskova1, Roman Vodicka2, Jiri Rubes1 1 Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic, 2 Zoo Prague, Prague, Czech Republic a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Cervidae family comprises more than fifty species divided into three subfamilies: Capreolinae, Cervinae and Hydropotinae. A characteristic attribute for the species included in this family is the great karyotype diversity, with the chromosomal numbers ranging from OPEN ACCESS 2n = 6 observed in female Muntiacus muntjak vaginalis to 2n = 70 found in Mazama goua- Citation: Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova H, Vodicka R, et al. zoubira as a result of numerous Robertsonian and tandem fusions. This work reports chro- (2017) Karyotype relationships among selected mosomal homologies between cattle (Bos taurus, 2n = 60) and nine cervid species using a deer species and cattle revealed by bovine FISH combination of whole chromosome and region-specific paints and BAC clones derived from probes. PLoS ONE 12(11): e0187559. https://doi. cattle. We show that despite the great diversity of karyotypes in the studied species, the org/10.1371/journal.pone.0187559 number of conserved chromosomal segments detected by 29 cattle whole chromosome Editor: Roscoe Stanyon, University of Florence, painting probes was 35 for all Cervidae samples. The detailed analysis of the X chromo- ITALY somes revealed two different morphological types within Cervidae. The first one, present in Received: August 23, 2017 the Capreolinae is a sub/metacentric X with the structure more similar to the bovine X. -
Attachment 1 .PLOS ONE
Attachment 1 .PLOS ONE CORRECTION Correction: Exposure of bighorn sheep to domestic goats colonized with Mycoplasma ovipneumoniae induces sub-lethal pneumonia Thomas E. Besser, E. Frances Cassirer, Kathleen A. Potter, William J. Foreyt Tn response to queries raised after publication, the authors, the authors’ institution (Office of Research Assurance, Washington State University) and a member of PLOS ONE’s Editorial Board have reviewed the findings in this article, and as a consequence the authors provide an update to the Competing Interests statement and clarifications regarding the results: The competing interests declaration is updated to acknowledge additional sources of fund ing received by the authors. This specific study was supported by funding competitively awarded by the Wild Sheep Foundation and by revenue from the WSU Rocky Crate Endow ment for Wild Sheep Disease Research. Additional research funding for the authors’ bighorn sheep pneumonia-related research has been received from the US Department of Agriculture (including the Animal Plant Health Inspection Service and the US Forest Service), the US Geo logic Survey, numerous chapters and affiliates of the Wild Sheep Foundation, and the WSU Fowler Emerging Infectious Diseases endowment. Regarding the pneumonia diagnosis reported in the article, the authors re-assessed the pri mary data and solicited and received a second opinion from a veterinary pathologist at Wash ington Animal Disease Diagnostic Lab (WADDL) unassociated with the original project. Following this reassessment, the authors confirmed the descriptions and diagnoses as reported in the article, but they noted that the consulted pathologist advised, “some pathologists might describe the histopathologic lesions seen in the least severely affected animal as ‘bronchiolitis’ rather than ‘pneumonia’ due to the preponderance of that lesion in that animal”.