Quality Control of Pesticide Products

Total Page:16

File Type:pdf, Size:1020Kb

Quality Control of Pesticide Products IAEA-TECDOC-1612 Quality Control of Pesticide Products prepared by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture July 2009 IAEA-TECDOC-1612 Quality Control of Pesticide Products prepared by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture July 2009 The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria QUALITY CONTROL OF PESTICIDE PRODUCTS IAEA, VIENNA, 2009 IAEA-TECDOC-1612 ISBN 978-92-0-104909-4 ISSN 1011-4289 © IAEA, 2009 Printed by the IAEA in Austria July 2009 FOREWORD The world population is expected to increase to 8.3 billion people by 2030 (FAO, 2002) and although increasing numbers will be well-fed, the target set in 1996 by the World Food Summit to reduce the number of chronically malnourished people to half by 2015 is unlikely to be met without improved agricultural technology, including the safe and efficient use of pesticides. The majority of authorized pesticide products are currently undergoing a process of re-registration, particularly in countries where regulatory systems are well established. Only two thirds of these products are expected to meet the stringent new criteria for safety, toxicity and efficacy. As a result high-quality formulations for some pesticides produced in developed countries could be phased out. Inevitably the production and use of these pesticides will be continuing, mostly in developing countries, where pesticide registration systems are not well established. Without strong registration and enforcement standards various negative impacts are likely to re-emerge. For example, uncontrolled technical impurities accompanying any active substance or base material used for the formulation could worsen the toxicicological properties of final products and thereby cause additional adverse health and environmental effects. By the same token, inappropriately defined concentrations can lead to overuse and misuse of pesticides by the user. Analytical quality control of pesticides analysis is crucial for ensuring their safe and effective use in agriculture. Supervision of a large number of pesticide products required for crop protection in agriculture can only be implemented with support from well-equipped laboratories, operated by trained and experienced staff applying methods suitable for the analysis of numerous active ingredients in a reliable and economical manner. This can only be fully achieved by using “Multi- Pesticide Methods” (MPM), instead of “single-analyte” methods optimized and collaboratively validated for a particular product formulation. Recognizing the need of regulatory laboratories to improve their position through rationalization of their internal analytical regimes, a coordinated research project (CRP) was initiated within the Joint Programme of FAO and IAEA with the goal to assist national pesticide control agencies to assure the quality of pesticide products and hence supporting national legislation and regulations concerned with food quality and environmental protection. The CRP was designed with the help of consulting specialists and started with 15 Contract Holders and three Agreement Holders (see List of Participants). The first Research Coordination Meeting (RCM) was held in Vienna, Austria, in 2001, the second RCM took place in the Philippines in 2003 and the final RCM was held in Myanmar in 2006. The hospitality of the respective institutes in hosting the RCMs, above all the assistance in the organization and conduct of Ms. Uy from the National Pesticide Analytical Laboratory, Bureau of Plant Industry, Quezon City, Philippines and of Mr. Shwe from the Plant Protection Division, Yangon, Myanmar, and their respective colleagues are appreciated. The results of the research work reported in this IAEA-TECDOC provide detailed guidance for developing MPM, including practical examples demonstrating the application to the analysis of particular pesticide products. With the detailed description of the underlying principles, this publication may also be used as a training manual for the staff of respective pesticide formulation laboratories. The main contributors of analytical results and elaborated papers to the IAEA-TECDOC are E. Dudar, Canping Pan, J. Lantos, I. Virtics, E. Karasali, and Zhiqiang Zhou. Their inputs are especially appreciated. The CRP programme was formulated and initially led by Á. Ambrus, Head of IAEA Agrochemicals Unit until 2004. It was continued and completed by J. Brodesser, as Scientific Secretary. Finally, the IAEA-TECDOC was compiled by Á. Ambrus and the editing done by J. Brodesser. EDITORIAL NOTE This publication has been prepared from the original material as submitted by the authors. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMARY .............................................................................................................................................1 GENERAL GUIDANCE Principles of single-laboratory validation of analytical methods for testing the chemical composition of pesticides...............................................................................................................9 A. Ambrus Stepwise procedure for development and validation of a multi-pesticide method ......................23 A. Ambrus Principles of developing multi-pesticide methods based on GC determination ..........................33 E. Dudar Principles of developing multi-pesticide methods based on HPLC determination......................35 E. Dudar The uncertainty of measurement results ......................................................................................43 A. Ambrus EXPERIMENTAL RESULTS Summary of validation of multi-pesticide methods for various pesticide formulations ..............63 A. Ambrus MULTI-PESTICIDE METHODS GC 'Multi-analyte' detection method ...........................................................................................81 E. Dudar Quality control of selected pesticides with GC............................................................................89 H. Karasali Application of multi-analyte methods for pesticide formulations .............................................101 J. Lantos, I. Virtics HPLC ‘Multi-analyte’ detection method ...................................................................................117 E. Dudar Quality control of selected pesticides with HPLC .....................................................................129 H. Karasali Multi-analyte separation methods for HPLC determination of the active ingredients of pesticides....................................................................................................................................141 I. Virtics, I. Korsós, E. Homoki, J. Lantos Separation and simultaneous determination of 14 fungicides with the combination of multi-analyte methods and HPLC detection ..............................................................................153 Canping Pan SYNTHESIS AND DETERMINATION OF IMPURITIES Synthesis and identification of selected impurities....................................................................159 Zhiqiang Zhou Determination of impurities of atrazine by HPLC-MS..............................................................171 Canping Pan ANNEX 1. UV SPECTRA OF COMPOUNDS INCLUDED IN SECTION “HPLC ‘MULTI-ANALYTE’ DETECTION METHOD”............................................................179 ANNEX 2. IR SPECTRA OF IMPURITIES SYNTHESIZED ..........................................................203 ANNEX 3. NMR SPECTRA OF IMPURITIES SYNTHESIZED .....................................................213 ANNEX 4. GC/MS CHROMATOGRAMS AND SPECTRA OF IMPURITIES SYNTHESIZED ...............................................................................................................223 LIST OF ABBREVIATIONS ..............................................................................................................231 LIST OF PARTICIPANTS ..................................................................................................................233 SUMMARY The use of pesticides in agriculture has played an important role in the enhancement of agricultural production and protection of the health of humans and animals. Pesticide use in some regions, e.g. in South-East Asia and Latin America, has increased because of the need for improved agricultural production and reduced post-harvest losses, whereas in other regions it remains at about the same level. At the same time, the growing concern related to food safety by keeping the pesticide residues at the lowest possible level, the principles of Good Agricultural Practice (GAP), including
Recommended publications
  • Chapter 6: Additional WPS Training Topics for Handlers
    ADDITIONAL WPS TRAINING TOPICS FOR HANDLERS CHAPTER Pesticide Labels 6-1 Contents 6-1: Reading and Understanding the Pesticide Label ............................70 The Parts of the Pesticide Label .......................................................................71 Brand Name ...................................................................................................74 Pesticide Manufacturer ................................................................................74 Pesticide Type ................................................................................................75 Active Ingredient ...........................................................................................75 Inert or Other Ingredients .............................................................................75 Pesticide Formulation ....................................................................................76 Table 6.1: Examples of Different Types of Pesticide Formulations ............76 EPA Registration Number ..............................................................................76 Signal Word ....................................................................................................77 First Aid ...........................................................................................................77 Personal Protective Equipment (PPE) ..........................................................78 Precautionary Statements ............................................................................78 Environmental
    [Show full text]
  • Managing Pesticide Drift1 F
    PI232 Managing Pesticide Drift1 F. M. Fishel and J. A. Ferrell2 Introduction may drift and whether it is harmful depends on interrelated factors that can be complex. The drift of spray from pesticide applications can expose people, plants and animals, and the environment to Drift is a significant legal concern in Florida. During pesticide residues that can cause health and environmental 2009–2010, the Florida Department of Agriculture and effects and property damage. Agricultural practices are Consumer Services (FDACS), which is the state pesticide poorly understood by the public, which causes anxiety and regulatory agency, initiated 39 investigations in response sometimes overreaction to a situation. Even the application to allegations of drift. Where significant drift does occur, of fertilizers or biological pesticides, like Bt or pheromones, it can damage or contaminate sensitive crops, poison bees, can be perceived as a danger to the general public. Drift pose health risks to humans and animals, and contaminate can lead to litigation, financially damaging court costs, soil and water in adjacent areas (Figure 1). Applicators are and appeals to restrict or ban the use of crop protection legally responsible for the damages resulting from the off- materials. Urbanization has led to much of Florida’s agri- target movement of pesticides. It is impossible to eliminate cultural production being in areas of close proximity to the drift totally, but it is possible to reduce it to a legal level. general public, including residential subdivisions, assisted The purpose of this guide is to discuss factors influencing living facilities, hospitals, and schools. Such sensitive sites drift and provide common-sense solutions for minimizing heighten the need for drift mitigation measures to be taken potential drift problems.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Pesticide Formulations
    CHAPTER 4 PESTICIDE FORMULATIONS LEARNING OBJECTIVES After studying this chapter, you should: • Understand what a pesticide formulation is. • Know how to interpret common abbreviations used to describe formulations (e.g., WP, DF, EC, RTU, S, G, ULV). • Know how to identify advantages and disadvantages of common formulation types (e.g., dusts, granules, wettable powders, dry flowables, microencapsulated, aerosols). • Know how to explain the role of adjuvants (e.g., buffers, stickers, spreaders) during pesticide application. Pesticide chemicals in their “raw” • Other ingredients, such as stabi- or unformulated state are not usually lizers, dyes, and chemicals that suitable for pest control. These concen- improve or enhance pesticidal trated chemicals (active ingredients) activity. may not mix well with water, may be Usually you need to mix a formu- chemically unstable, and may be dif- lated product with water or oil for final ficult to handle and transport. For application. Baits, granules, gels, and these reasons, manufacturers add inert dusts, however, are ready for use without substances such as clays and solvents additional dilution. Manufacturers to improve application effectiveness, package many specialized pesticides, Inert safety, handling, and storage. such as products for households, in ingredients do not possess pesticidal ready-to-use formulations. activity and are added to serve as a A single active ingredient often is carrier for the active ingredient. The sold in several kinds of formulations. mixture of active and inert ingredients Abbreviations are often used to describe is called a pesticide formulation. This the formulation (e.g., WP for wettable formulation may consist of: powders); how the pesticide is used • The pesticide active ingredient (e.g., TC for termiticide concentrate); that controls the target pest.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • Use of Pesticide Products Containing Toxic Inert Ingredients
    Inert Ingredients in Pesticide Products Inert Ingredients in Pesticide Products; Policy Statement OPP-36140; FRL-3190-1 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces certain policies designed to reduce the potential for adverse effects from the use of pesticide products containing toxic inert ingredients. The Agency is encouraging the use of the least toxic inert ingredient available and requiring the development of data necessary to determine the conditions of safe use of products containing toxic inert ingredients. In support of these policies, the Agency has categorized inert ingredients according to toxicity. The Agency will (1) require data and labeling for inert ingredients which have been demonstrated to cause toxic effects; (2) in selected cases pursue hearings to determine whether such inert ingredients should continue to be permitted in pesticide products; (3) require data on inert ingredients which are similar in chemical structure to chemicals with demonstrated toxic properties or which have suggestive, but incomplete data on toxicity; and (4) subject all new inert ingredients, both for food and non-food uses, to a minimal data set and scientific review. The Agency is soliciting comments on these policies. EFFECTIVE DATE: This policy is effective on April 22, 1987, subject to revision if comments received warrant such revision. ADDRESSES: Three copies of written comments bearing the document control number [OPP-36140] should be submitted, by mail, to: Information Services Section, Program Management and Support Division (TS-757C), Office of Pesticide Programs, Environmental Protection Agency, 401 M St. SW., Washington, DC 20460. In person deliver comments to: Rm. 236, CM #2, 1921 Jefferson Davis Highway, Arlington, VA.
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Toxicity and Hazard of Pesticides
    Pesticide Toxicity and Hazard April, 2017 Introduction Pesticide applicators should understand the hazards and risks associated with the pesticides they use. Pesticides vary greatly in toxicity. Toxicity depends on the chemical and physical properties of a substance, and may be defined as the quality of being poisonous or harmful to animals or plants. Pesticides have many different modes of action, but in general cause biochemical changes which interfere with normal cell functions. The toxicity of any compound is related to the dose. A highly toxic substance causes severe symptoms of poisoning with small doses. A substance with a low toxicity generally requires large doses to produce mild symptoms. Even common substances like coffee or salt become poisons if large amounts are consumed. Toxicity can be either acute or chronic. Acute toxicity is the ability of a substance to cause harmful effects which develop rapidly following exposure, i.e. a few hours or a day. Chronic toxicity is the ability of a substance to cause adverse health effects resulting from long-term exposure to a substance. There is a great range in the toxicity of pesticides to humans. The relative hazard of a pesticide is dependent upon the toxicity of the pesticide, the dose and the length of time exposed. The hazard in using a pesticide is related to the likelihood of exposure to harmful amounts of the pesticide. The toxicity of a pesticide can’t be changed but the risk of exposure can be reduced with the use of proper personal protective equipment (PPE), proper handling and application procedures. Pesticide Toxicity Some pesticides are dangerous after one large dose (acute toxicity).
    [Show full text]
  • Pesticides and Pests
    Pesticides and Pests Pesticides and Pests Edited by Balraj Singh Parmar, Shashi Bala Singh and Suresh Walia Pesticides and Pests Edited by Balraj Singh Parmar, Shashi Bala Singh and Suresh Walia This book first published 2019 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2019 by Balraj Singh Parmar, Shashi Bala Singh, Suresh Walia and contributors All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-3803-6 ISBN (13): 978-1-5275-3803-0 TABLE OF CONTENTS Preface ....................................................................................................... vii Chapter One ................................................................................................. 1 Introduction Balraj S. Parmar Chapter Two .............................................................................................. 21 Realities and Challenges of Pesticides for Food Security in India D.K. Chopra Chapter Three ............................................................................................ 50 The Insecticides Act 1968 to the Pesticides Management Bill 2008 Vipin Saini Chapter Four .............................................................................................
    [Show full text]
  • Chapter 4 Pesticide Formulations
    Chapter 4 Pesticide Formulations Pesticide active ingredients in their “raw” or unformulated state are not usually suitable for pest control. Manufacturers of pesticides mix in other ingredients to “formulate” the pesticide into a usable final product. This Chapter discusses different pesticide formulations and handling information that will help applicators work safely with each type. Applicator mixing a pesticide concentrate. Photographer: M.J. Weaver Institution: Virginia Tech Source: pesticides.org (Virginia Tech) Chapter 1.4. IntegratedPesticide Formulations Pest Management 85 Notes Page PRIVATE PESTICIDE APPLICATOR TRAINING MANUAL 19th Edition 86 Section 1: Overview of Pesticide Formulations Pesticide active ingredients by themselves may not mix well with water, may be chemically unstable, may be difficult to handle or store, and may be difficult to apply for good pest control. To make an active ingredient useful, manufacturers add other ingredients (sometimes called inert ingredients) to “formulate” the pesticide into the final product offered for sale. This Section explains why pesticides are manufactured in different formulations and describes the benefits and disadvantages of different formulations. Learning Objectives: 1. Explain the difference between a pesticide formulation and an active ingredient. 2. Identify strengths and weaknesses of common types of pesticide formulations. 3. Know how to interpret common abbreviations used to describe formulations (For example, WP, DF, EC, RTU, S, G, ULV). Terms to Know: w Active ingredient
    [Show full text]
  • Pesticide Formulations1 Frederick M
    PI231 Pesticide Formulations1 Frederick M. Fishel2 Introduction Usually you need to mix a formulated product with water or oil for final application. Most baits, granules, gels, and Pesticide chemicals in their “raw” or unformulated state dusts, however, are ready for use without additional dilu- are not usually suitable for pest control. These concentrated tion. Manufacturers package many specialized pesticides, chemicals and active ingredients may not mix well with such as products for households, in ready-to-use formula- water, may be chemically unstable, and may be difficult to tions (Figure 2). handle and transport. For these reasons, manufacturers add inert substances, such as clays and solvents, to improve application effectiveness, safety, handling, and storage. Inert ingredients do not possess pesticidal activity and are added to serve as a carrier for the active ingredient. Manufacturers will list the percentage of inert ingredients in the formula- tion or designate them as “other ingredients” on their labels. There are several inert substances, such as petroleum Figure 1. Some inert ingredients are specifically identified in the label distillates and xylene, which will have a specific statement ingredient statement. identifying their presence in the formulation (Figure 1). Credits: CDMS. The mixture of active and inert ingredients is called a A single active ingredient often is sold in several kinds of pesticide formulation. This formulation may consist of: formulations. Abbreviations are frequently used to describe the formulation (e.g., WP for wettable powders); how the • The pesticide active ingredient that controls the target pesticide is used (e.g., TC for termiticide concentrate); pest or the characteristics of the formulation (e.g., ULV for an • The carrier, such as an organic solvent or mineral clay ultra-low-volume formulation).
    [Show full text]
  • Manual on Development and Use of FAO and WHO Specifications for Pesticides. Month 2015 3Rd Revision of First Edition
    412 ISSN 1014-11971014-1200 228 ISSN ISSN0259-2517 1020-055X 8 ESTUDIOESTUDIOƒTUDE FAOFAO BiotecnologíaEtudeTitle Spanish prospective agrícola INVESTIGACIÓNPRODUCCIîNFORæTSPLANT YPRODUCTION TECNOLOGIAY SANIDAD paradugdfgdfgdf secteur países sdforestier en desarrollo AND PROTECTIONANIMAL Manual on development and use of FAOand WHO specifications for 141PAPER In 2001, the Food and Agriculture Organization of the United Nations (FAO) and enJgfsdFFAO/WHOResultados Afrique de un foro electrónico Meetingf 8 the World Health Organization (WHO) agreed to develop specifications for pesticides jointly, thus providing unique, robust and universally applicable 412 standards for pesticide quality. This joint programme is based on a Memorandum RapportSubtiltle r gional Ð opportunit s et d s ˆ l'horizon228 2020 of Understanding between the two Organizations. Manual on development The March 2016 revision of the 1st edition of the Manual on development and En estaCe publicación rapport r gional se presenta de lÕEtude un informe prospective sobre du las secteur primerasBlurb TEXTforestier seis conferencias en Afrique fournitmediante une correo vue dÕensemble electrónico des use of FAO and WHO specifications for pesticides, which is available only on the organizadaspossibilit s por oertes el Foro et electrónicodes d s ˆ relever de la FAOpour sobre Helveticarenforcer la biotecnología boldla contribution 8/12 en ladu alimentación secteur forestier y la agricultura,au d veloppement internet, supersedes the 2010 revision and previous manuals and guidance celebradasdurable entre de marzo lÕAfrique, de 2000 dans y mayo le contexte de 2001. des Todas changements las conferencias politiques contaron et institutionnels, con un moderador, d mographiques, duraron and use of FAO and WHO aproximadamentedocumentsconomiques, published dos technologiques meses by y eitherse centraron et FAOenvironnementaux.
    [Show full text]