Characteristics of Prepared Fenpropathrin Nano-Emulsion and Research on Glutathione S-Transferase Enzymatic Activity and Penetration Performance on T

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Prepared Fenpropathrin Nano-Emulsion and Research on Glutathione S-Transferase Enzymatic Activity and Penetration Performance on T Materials Express 2158-5849/2019/9/451/008 Copyright © 2019 by American Scientific Publishers All rights reserved. doi:10.1166/mex.2019.1510 Printed in the United States of America www.aspbs.com/mex Characteristics of prepared fenpropathrin nano-emulsion and research on glutathione S-transferase enzymatic activity and penetration performance on T. cinnabarinus Ni Yang1,†,TaoTang2, †,HuanYu1,FeiXue1, Chuanzhen Li1, 3, Shuang Rong1,LinHe1, 3,andKunQian1,∗ 1Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China 2State Key Laboratory for Quality and Safety of Agro-Products (In Prepared), Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China 3Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China Article IP: 192.168.39.211 On: Sun, 26 Sep 2021 00:44:07 Copyright: American Scientific Publishers Delivered by Ingenta ABSTRACT In this study, fenpropathrin nano-emulsion (NE) was prepared by phase inversion emulsification method. 8% xylene and 2% solvent oil 150 (The main component is 1,2,4,5-Tetramethylbenzene) were used as solvent, styrylphenolpolyoxyethylene and calcium dodecylbenzenesulfonate were used as surfactants. The particle size, zeta potential, conductivity and contact angle were detected to evaluate the characteristic of the nano-emulsion. Toxicity of fenpropathrin nano-emulsion on the pest mite, Tetranychus cinnabarinus, was analyzed. The particle sizes of 8% fenpropathrin nano-emulsion and 20% fenpropathrin emulsion concentrates (EC) were 31.53 nm and 459.00 nm, zeta potentials were −22 mV and 5.762 mV, respectively, which showed that the size of nano- emulsion was much smaller and its stability was higher than that of EC. The contact angles of these two formulations were tested in concentrations of 500 mg/L to 2000 mg/L. We found that the contact angle of NE at the same concentration was 32% lower than that of EC averagely. The results indicated that the wettability and adhesion ability of nano-emulsion droplets were better than those of EC on the biological targets. According to determination of penetration performance to T. cinnabarinus, it was found that the penetration performance of NE to T. cinnabarinus is 4–6 times higher than that of EC. With the characteristics above, the NE has exhibited higher biological activity on the T. cinnabarinus. The results of Glutathione-S-transferase (GSTs) enzymatic activity of T. cinnabarinus showed nano-emulsion had higher effects than EC. In conclusion, compared with EC, nano-emulsion has better penetration, biological activity and a great application prospect in pesticide field in the future. Keywords: Fenpropathrin, Nano-Emulsion, Contact Angle, Enzymatic Activity, Penetration Performance. 1. INTRODUCTION Fenpropathrin acts on the nervous system of pests and is ∗ often used as insecticide/acaricide [1, 2]. Since its low Author to whom correspondence should be addressed. Email: [email protected] solubility in water (14.1 g/L, 25 C), and unstability in †These two authors contributed equally to this work. alkaline solution, fenpropathrin is often used in the form Mater. Express, Vol. 9, No. 5, 2019 451 Materials Express Characteristics of prepared fenpropathrin nano-emulsion Yang et al. of emulsion concentrate (EC) for pest control. Unfortu- effects of fenpropathrin nano-emulsion and EC on GST nately, although EC is a traditional pesticide formulation, activity of T. cinnabarinus. In addition, the differences of it has great negative effect on human health and the envi- contact angle, adhesion work and penetration performance ronment [3–5] because of the large quantities of organic between nano-emulsion and EC were also compared. solvents used in EC. In order to reduce environmental pol- Nano-emulsion is mainly used in cosmetics, medicine lution, it is necessary to replace EC with new environmen- and other fields, but it has not been promoted in pesti- tal protection formula. cide production. This experiment introduced the character- In recent years, nano-pesticides have become a research istics and advantages of nano-emulsion from many aspects hotspot. Many types of nano-pesticides are prepared by of pesticide properties, which is of great significance to using nano-materials as carriers [6]. Some researchers the application and popularization of nano-emulsion in the have developed new methods for pesticide detection by field of pesticide. using the adsorption properties of nano-materials, and improved the detection limit of pesticides [7–10]. Nano- 2. MATERIALS AND METHODS pesticides are the trend of pesticide development, and 2.1. Materials nano-emulsions are expected to become the hot dosage forms in the future. Nano-emulsions have a series of 8 wt.% fenpropathrin nano-emulsion was prepared by advantages such as small particle size, narrow droplet size a phase inversion emulsification method. Formula of distribution and so on, which make them very attractive in fenpropathrin nano-emulsion was as follows, 8% fen- many aspects of industrial applications [11–15]. Because propathrin, 8% xylene, 2% solvent oil 150, 11% emulsifier \ of the small particle size, nano-emulsion has high stability (LAE CaDDBS, 2:1) and 71% water. for precipitation, emulsification, flocculation or coagula- Fenpropathrin (emulsion concentrate, 20%) was pur- tion [16]. Although the particle size and some properties chased from Zhejiang Well-done Chemical Co., Ltd. of nano-emulsions are similar to those of microemulsions (Zhejiang, China). Fenpropathrin (technical grade, 92.9%) (for example, both being transparent) [17], the formation was provided by Nanjing Red Sun Co., Ltd. (Jiangsu, of nano-emulsions requires lower surfactant concentration China). Dimethylbenzene was purchased from Chengdu and less polar solvents [18–20]. Kelong Chemical Co., Ltd. (Chengdu, China). Calcium The key factors in the formationIP: 192.168.39.211 of nanoemulsion On: are Sun,dodecyl 26 Sep benzene2021 00:44:07 sulfonate (99%, CaDDBS) and poly- related to emulsification kinetics [21].Copyright: Nano emulsion American can Scientificoxyethylene Publishers fatty acid (99%, LAE) were provided by Delivered by Ingenta not spontaneously form. Their properties depend not only Lvshun Chemicals Co., Ltd. (Lvshun, China). All products on thermodynamic conditions, but also on the addition were not purified further. Deionized water was used in this experiment. Article method and order of components [22]. Stable and transpar- ent nano-emulsion can be prepared only by selecting suit- 1-chloro-2,4-dini-trobenzene (CDNB) was purchased able system composition and preparation method. In these from the Shanghai No. 1 Reagent Factory (Shanghai, studies, a low-energy method [23] was adopted at constant China); Coomassie blue G-250 was provided by Amresco temperature to prepare fenpropathrin (active ingredient) Co. (Solon, USA); bovine serum albumin (BSA) was from nano-emulsion with anionic-nonionic surfactant mixture. Shanghai BioLife Science & Technology Co. (Shanghai, The purpose of this work is to determine the optimum China). concentration and ratio of O/W nano-emulsion surfactant. The method is to test the influence of different propor- 2.2. Preparation Process of Nano-Emulsion tions and total concentration of surfactants on the long- In the preparation process of nano-emulsion, LEEM was term stability of nano-emulsion [24, 25]. Most researches used to prepare 20 g 8 wt.% fenpropathrin nano-emulsions are focused on the application of nano-emulsions in the with 8–12 wt% surfactant (emulsifier ABSA and phe- medical fields [26], while very few are in the pesticide noxyethyl phenol polyoxyethylene ether) at 25 C. Firstly, field. fenpropathrin was completely dissolved in xylene, and In this study, a stable fenpropathrin nano-emulsion then surfactant was added into beaker to form oil phase was prepared by low-energy emulsification method evenly. And then water was added dropwise to oil phase (LEEM) [11, 27, 28] and the particle size, conductivity using a magnetic stirrer (JintanFuhua Instrument Co., Ltd., and zeta potential of the nano-emulsion were determined Jiangsu, China) for 30 min at 25 C. The preparation pro- for preliminary understanding the stability mechanism of cess of nano-emulsion by LEEM was shown in Figure 1. nano-emulsion. It can be predicted that pesticide micro- The stability of fenpropathrin nano-emulsion at 0 Cand droplets have better wettability and permeability to biolog- 54 C was analyzed. The experimental results were showed ical targets at nano-size, thus improving biological activity. in Table I. GSTs is one of the most important phase II metabolic enzymes in vivo, and is the main detoxification system of 2.3. Conductivity Measurement cell anti-injury. To a certain extent, it can reflect the bio- Conductivity was detected by a Conductimeter Crison logical activity of pesticides [29]. Therefore, we tested the model 525 with a Pt/platinized electrode. 452 Mater. Express, Vol. 9, 2019 Characteristics of prepared fenpropathrin nano-emulsion Materials Express Yang et al. of Beibei District, Chongqing, China, and transferred to fresh potted young cowpea plants. The 200th generation after indoor breeding of about 13 years under artificial cli- mate: 24∼26 C, 60∼80% RH) was transferred into the centrifuge tube (three replicates for each treatment. After 24 hours, mites were observed under an anatomical
Recommended publications
  • Chapter 6: Additional WPS Training Topics for Handlers
    ADDITIONAL WPS TRAINING TOPICS FOR HANDLERS CHAPTER Pesticide Labels 6-1 Contents 6-1: Reading and Understanding the Pesticide Label ............................70 The Parts of the Pesticide Label .......................................................................71 Brand Name ...................................................................................................74 Pesticide Manufacturer ................................................................................74 Pesticide Type ................................................................................................75 Active Ingredient ...........................................................................................75 Inert or Other Ingredients .............................................................................75 Pesticide Formulation ....................................................................................76 Table 6.1: Examples of Different Types of Pesticide Formulations ............76 EPA Registration Number ..............................................................................76 Signal Word ....................................................................................................77 First Aid ...........................................................................................................77 Personal Protective Equipment (PPE) ..........................................................78 Precautionary Statements ............................................................................78 Environmental
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet DANITOL 2.4 EC (WARNING Statement) This Material Safety Data Sheet (MSDS) serves different purposes than and DOES NOT REPLACE OR MODIFY THE EPA-APPROVED PRODUCT LABELING (attached to and accompanying the product container). This MSDS provides important health, safety, and environmental information for employers, employees, emergency responders and others handling large quantities of the product in activities generally other than product use, while the labeling provides that information specifically for product use in the ordinary course. Use, storage and disposal of pesticide products is regulated by the EPA under the authority of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) through the product labeling. All necessary and appropriate precautionary, use, and storage, and disposal information is set forth on that labeling. It is a violation of federal law to use a pesticide product in any manner not prescribed on the EPA-approved label. 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME: DANITOL 2.4 EC (WARNING Statement) VC NUMBER(S): 1237 & 1238 & 1340 ITEM: 69625 SYNONYM(S): None EPA REGISTRATION NUMBER: 59639-35 MANUFACTURER/DISTRIBUTOR EMERGENCY TELEPHONE NUMBERS VALENT U.S.A. CORPORATION HEALTH EMERGENCY OR SPILL (24 hr): P.O. Box 8025 (800) 892-0099 1600 Riviera Avenue, Suite 200 TRANSPORTATION (24 hr.): CHEMTREC Walnut Creek, CA 94596-8025. (800) 424-9300 or (202) 483-7616. PRODUCT INFORMATION AGRICULTURAL PRODUCTS: (800) 682-5368 PROFESSIONAL PRODUCTS: (800) 898-2536 The current MSDS is available through our website or by calling the product information numbers listed above. (www.valent.com) 2. COMPOSITION/INFORMATION ON INGREDIENTS Chemical Name Weight/ ACGIH Exposure Limits OSHA Exposure Limits Manufacturer's Exposure Percent Limits Fenpropathrin (alpha-cyano-3-phenoxybenzyl 30 - 32 None.
    [Show full text]
  • Pesticide Resistance Management an Insect Perspective
    PesticidePesticide ResistanceResistance ManagementManagement AnAn InsectInsect PerspectivePerspective FrankFrank Zalom,Zalom, Dept.Dept. ofof Entomology,Entomology, UCUC DavisDavis NickNick Toscano,Toscano, DeptDept ofof Entomology,Entomology, UCUC RiversideRiverside FrankFrank Byrne,Byrne, DeptDept ofof Entomology,Entomology, UCUC RiversideRiverside InsecticideInsecticide resistanceresistance isis duedue toto aa geneticgenetic traittrait aa pestpest inheritsinherits thatthat allowsallows itit toto survivesurvive anan applicationapplication thatthat mostmost otherother individualsindividuals inin thethe populationpopulation cannotcannot survive.survive. TheThe survivorsurvivor thenthen passespasses thethe genesgenes forfor resistanceresistance onon toto thethe nextnext generation.generation. X TheThe moremore thethe insecticideinsecticide isis used,used, thethe moremore quicklyquickly susceptiblesusceptible individualsindividuals areare eliminatedeliminated andand thethe fasterfaster thethe proportionproportion ofof resistantresistant individualsindividuals increasesincreases inin thethe population.population. X X X X X X IncreasingIncreasing pesticidepesticide ratesrates ResistanceResistance MechanismsMechanisms InsecticideInsecticide avoidanceavoidance behaviorsbehaviors -- • InsectsInsects maymay changechange theirtheir behaviorbehavior inin orderorder toto avoidavoid thethe pesticide.pesticide. BiochemicalBiochemical mechanismsmechanisms -- • ResistantResistant insectsinsects possesposses enzymesenzymes thatthat breakbreak downdown
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Managing Pesticide Drift1 F
    PI232 Managing Pesticide Drift1 F. M. Fishel and J. A. Ferrell2 Introduction may drift and whether it is harmful depends on interrelated factors that can be complex. The drift of spray from pesticide applications can expose people, plants and animals, and the environment to Drift is a significant legal concern in Florida. During pesticide residues that can cause health and environmental 2009–2010, the Florida Department of Agriculture and effects and property damage. Agricultural practices are Consumer Services (FDACS), which is the state pesticide poorly understood by the public, which causes anxiety and regulatory agency, initiated 39 investigations in response sometimes overreaction to a situation. Even the application to allegations of drift. Where significant drift does occur, of fertilizers or biological pesticides, like Bt or pheromones, it can damage or contaminate sensitive crops, poison bees, can be perceived as a danger to the general public. Drift pose health risks to humans and animals, and contaminate can lead to litigation, financially damaging court costs, soil and water in adjacent areas (Figure 1). Applicators are and appeals to restrict or ban the use of crop protection legally responsible for the damages resulting from the off- materials. Urbanization has led to much of Florida’s agri- target movement of pesticides. It is impossible to eliminate cultural production being in areas of close proximity to the drift totally, but it is possible to reduce it to a legal level. general public, including residential subdivisions, assisted The purpose of this guide is to discuss factors influencing living facilities, hospitals, and schools. Such sensitive sites drift and provide common-sense solutions for minimizing heighten the need for drift mitigation measures to be taken potential drift problems.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Guide to Integrated Pest Management (IPM) a Science-Based Approach for Ecologically Sound Land Management
    Guide to Integrated Pest Management (IPM) A science-based approach for ecologically sound land management The first and most By Dr. Vera Krischik, important steps of IPM are and Laurie Schneider to accept that plants can University of Minnesota, handle some pest and Entomology, Jan. 2020 disease damage, and to determine your economic threshold. INSIDE: Left: Regular inspection of plants for pests and disease. • What is IPM? photo: PFA 2020 • IPM Integrated Pest Management (IPM) is an ecosystem-based approach that employs long- Implementation term prevention of pests and pest damage through monitoring of plants, pests and weather to project ahead and plan. While pesticides simply respond to the pest, IPM addresses the source of pest problems. IPM strives to avoid chemicals harmful to • Natural pollinators and toxic to the environment. Predator Guide It's important for land managers, homeowners and farmers to learn how to implement an IPM plan. Any individual or organization can adopt an IPM plan for spaces from backyards • Insecticide to public parks to farms. IPM plans should be updated annually, and staff need to be Toxicity to trained on pesticide use and best practices. Pollinators IPM promotes multiple tactics and controls to manage pests and to suppress the population size below levels that will damage the plant. Cultural controls are practices that reduce pest establishment, reproduction, Find more on IPM dispersal and survival. For example, the pest's environment can be disrupted by turning and pollinator under garden soil, mowing, sterilizing tools and harvesting early. Composting, watering, conservation at: mulching, pruning, fertilizing and ground covers can all help improve plant health, resulting ncipmhort.cfans.umn.edu in healthier plants that can tolerate some damage.
    [Show full text]
  • Republic of the Marshall Islands Environmental Protection Authority Pesticides and Persistent Organic Pollutants (Pops) Regulati
    REPUBLIC OF THE MARSHALL ISLANDS ENVIRONMENTAL PROTECTION AUTHORITY PESTICIDES AND PERSISTENT ORGANIC POLLUTANTS (POPS) REGULATIONS June 2004 INDEX PART I - GENERAL PROVISIONS 1. Authority 2. Purpose 3. Effective date 4. Interpretation 5. Severability PART II - UNLAWFUL ACTS 6. General 7. Exemptions PART III - CERTIFICATION OF APPLICATORS 8. General requirements 9. Classes of applicators 10. Determination of competency 11. Standards for certification of commercial applicators 12. Standards for certification of private applicators 13. Duration of certification and renewals 14. Standards for supervision 15. Denial, suspension and revocation PART IV - PERMIT TO DEAL IN RESTRICTED USE PESTICIDE 16. Permit required 17. Application for permit 18. Suspension or revocation PART V - RECORDS 19. Records to be kept by commercial applicators 20. Records to be kept by a licensed dealer 21. Additional records 22. Access to records PART VI - IMPORTATION 23. Notice of intent 24. Inspection 25. Shipments arriving without notice 26. Detained, denied, and impounded shipments PART VII - RESTRICTING AND BANNING OF PESTICIDES AND POPS 27. Restriction of pesticides 28. Banning of pesticides PART VIII - EXPERIMENTAL USE PERMITS 29. Application for permit 30. Restrictions 31. Denial 32. Duration 33. Special label requirements 34. Reports 35. Revocation PART IX - ENFORCEMENT 36. Violations 37. Public hearing 38. Right to enter 39. Penalty for lack of permit APPENDIX A Restricted Use Pesticides APPENDIX B Persistent Organic Pollutants (POPS) REPUBLIC OF THE MARSHALL ISLANDS ENVIRONMENTAL PROTECTION AUTHORITY PESTICIDES AND TOXIC CHEMICAL SUBSTANCES REGULATIONS 2004 PART I – GENERAL PROVISIONS 1. Authority a) These regulations are promulgated by the Republic of the Marshall Islands Environmental Protection Authority with the approval of the President pursuant to Sections 21 and 63 of the National Environmental Protection Act 1984.
    [Show full text]
  • Pesticide Formulations
    CHAPTER 4 PESTICIDE FORMULATIONS LEARNING OBJECTIVES After studying this chapter, you should: • Understand what a pesticide formulation is. • Know how to interpret common abbreviations used to describe formulations (e.g., WP, DF, EC, RTU, S, G, ULV). • Know how to identify advantages and disadvantages of common formulation types (e.g., dusts, granules, wettable powders, dry flowables, microencapsulated, aerosols). • Know how to explain the role of adjuvants (e.g., buffers, stickers, spreaders) during pesticide application. Pesticide chemicals in their “raw” • Other ingredients, such as stabi- or unformulated state are not usually lizers, dyes, and chemicals that suitable for pest control. These concen- improve or enhance pesticidal trated chemicals (active ingredients) activity. may not mix well with water, may be Usually you need to mix a formu- chemically unstable, and may be dif- lated product with water or oil for final ficult to handle and transport. For application. Baits, granules, gels, and these reasons, manufacturers add inert dusts, however, are ready for use without substances such as clays and solvents additional dilution. Manufacturers to improve application effectiveness, package many specialized pesticides, Inert safety, handling, and storage. such as products for households, in ingredients do not possess pesticidal ready-to-use formulations. activity and are added to serve as a A single active ingredient often is carrier for the active ingredient. The sold in several kinds of formulations. mixture of active and inert ingredients Abbreviations are often used to describe is called a pesticide formulation. This the formulation (e.g., WP for wettable formulation may consist of: powders); how the pesticide is used • The pesticide active ingredient (e.g., TC for termiticide concentrate); that controls the target pest.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • DANITOL 2.4 EC Spray Per Acre Per Season
    SPECIMEN LABEL. Database and format copyright © 2001 by C&P Press. All rights reserved. 1 Valent USA Corporation ENVIRONMENTAL HAZARDS This product is extremely toxic to fish and aquatic organisms and is toxic to wildlife. Do not apply directly to water, or to areas where surface water is present ® or to intertidal areas below the mean high water mark. Do not apply when weather DANITOL 2.4 EC conditions favor drift from areas treated. Do not contaminate water when cleaning equipment or when disposing of equipment washwaters. This product is highly toxic to bees exposed to direct treatment or residues on SPRAY blooming crops or weeds. Do not apply this product or allow it to drift to blooming (INSECTICIDE—MITICIDE) crops or weeds if bees are visiting the treatment area. PHYSICAL OR CHEMICAL HAZARDS RESTRICTED USE PESTICIDE Do not use or store near heat or open flame. DUE TO TOXICITY TO FISH AND AQUATIC ORGANISMS DIRECTIONS FOR USE For retail sale to and use only by Certified Applicators, or persons under their direct supervision, and only for those uses covered by the Certified Applicator’s It is a violation of Federal Law to use this product in a manner inconsistent with certification. its labeling. READ ENTIRE LABEL AND HANG TAG. USE STRICTLY IN ACCOR- Active Ingredient By Wt. DANCE WITH PRECAUTIONARY STATEMENTS AND DIRECTIONS *Fenpropathrin........................................... 30.9% AND WITH APPLICABLE STATE AND FEDERAL REGULATIONS. OtherIngredients............................................. 69.1% Do not apply this product in a way that will contact workers or other persons, *(alpha-Cyano-3-phenoxybenzyl either directly or through drift.
    [Show full text]
  • Use of Pesticide Products Containing Toxic Inert Ingredients
    Inert Ingredients in Pesticide Products Inert Ingredients in Pesticide Products; Policy Statement OPP-36140; FRL-3190-1 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces certain policies designed to reduce the potential for adverse effects from the use of pesticide products containing toxic inert ingredients. The Agency is encouraging the use of the least toxic inert ingredient available and requiring the development of data necessary to determine the conditions of safe use of products containing toxic inert ingredients. In support of these policies, the Agency has categorized inert ingredients according to toxicity. The Agency will (1) require data and labeling for inert ingredients which have been demonstrated to cause toxic effects; (2) in selected cases pursue hearings to determine whether such inert ingredients should continue to be permitted in pesticide products; (3) require data on inert ingredients which are similar in chemical structure to chemicals with demonstrated toxic properties or which have suggestive, but incomplete data on toxicity; and (4) subject all new inert ingredients, both for food and non-food uses, to a minimal data set and scientific review. The Agency is soliciting comments on these policies. EFFECTIVE DATE: This policy is effective on April 22, 1987, subject to revision if comments received warrant such revision. ADDRESSES: Three copies of written comments bearing the document control number [OPP-36140] should be submitted, by mail, to: Information Services Section, Program Management and Support Division (TS-757C), Office of Pesticide Programs, Environmental Protection Agency, 401 M St. SW., Washington, DC 20460. In person deliver comments to: Rm. 236, CM #2, 1921 Jefferson Davis Highway, Arlington, VA.
    [Show full text]