<<

Studies on the Small Fauna of Sabah, East Title II. Karyological Analysis of Some Sabahan (, Rodentia, Chiroptera)

Author(s) HARADA, Masashi; KOBAYASHI, Tsuneaki

Contributions from the Biological Laboratory, Kyoto Citation University (1980), 26(1): 83-95

Issue Date 1980-08-16

URL http://hdl.handle.net/2433/156019

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University Contn biol. Lab. K7oto Univ., Vol. 26, pp. 83-95 Issued 16 August 1980

Studies on the Small Mammal Fauna of Sabah, East Malaysia II. Karyological Analysis of Some Sabahan Mammals (Primates, Rodentia, Chiroptera)iÅr

Masashi HARADA and Tsuneaki KoBAyAsHi

Abstract Karyotypes of the following 18 small mammal species from Sabah, East Malaysia, have been analysed. The material includes one tree-shrew (Tupaia montana), 4 rodents (Rattus rattus, Mus musculus, SundasciurusJ'entinki, Callosciurus albescence) and 13 ( vamP7rus, C7noPterus brachptotis, alecto, Emballonura rivalis, Rhinolophus creaghi, HiPPosideros diaclema, HiPPosideros galen'tus labuanensis, Tddurida Plicata, Mlotis hersfietdi, ScatoPhilus temmincki, MinioPterus schreibersi, MinioPterus magnater, MinioPtertts australis). The results were given in Table 2. Karyotypes of 12 species in this paper are described for the first time. All the present data were compared with the respective data hitherto available to the authors, and some discussions were tried on their phylogenetical implications.

lntroduction In these ten years, mammalian cytogenetics has had some remarkable advances which nearly caused the classic karyotyping method and results to become obsolete ones in the cytogenetic field of biology, but there remains only few karyological know- ledge ofBornean fauna which has been comprised by great number ofanimal species. Present report treats 18 species of small mammals from Sabah, of which some species are the first time to report its karyotype, and try to compare them with known karyological data to each related datum. As a rule, cytogenetic findings confirm taxonomists' contention regarding species relationships in many cases. The authors hope that the present paper will also contribute to systematics of Sabahan mammals in some regards. The fieldwork was fully funded by the "Overseas Scientific Research Grant" delivered from the Ministry of Education ofJapan. During our field-works in Sabah, following gentlemen extended their heartfu1 support. The authors must express their sincere thanks to them. Senior Research OMcer Mr. Liew That Chin, Forest Research Center, Mr. Francis Liu, Park Warden of the Kinabalu National Park, and Professor Dr. Ryozo Yoshii, Entomologist of Sabah Forest Research Center and former Organizer of this project, gave us pertinent suggestions for the project. We thank Mr. Michihiro Yosida ofSandakan, is particularly acknowledged for hospitality and co-operation for arrang-

1) Contribution from the "Kyoto University Biological Expedition to the Malesian Tropical Rain Forest" No. 5. 84 M. HARADA & T.KoBAyAsHI ing transportations. Mr. Raymund Goh, Assistant Curator of Sabah Museum, who had followed up whole collection works and gave valuable advices on localities where suitable specimens can collect to the authors. Mr. Saike Lentoh, Assistant Researcher of F.R.C., and other pearsons sent by F.R.C. also freindly covered our distressed job in the field. Drs. Toshitaka Hidaka, Sumiko Matsumura and Mr. Yoshihiro Tempo provided valuable company and support during the fieldwork. The authors' sincere thanks are also due to the Oska City University Medical School, for granting leaves of his valuable collegue for participation in overseas survey.

Materials and Methods

The materials used in the present studies are 18 species from Sabah, Borneo. Identification of these mammals is refered to Harrison (1964) and Medway(I969).

Table 1 . The materials used in the present study; their names of species and localities of collection. Number of Species specimens examined Localities of collection Male Female Family Tupaiidae TuPaia montana 5, 2 H. Q., Mt. Kinabalu, Sabah Family Muridae Rattus rattus 3, o Penempang, Sabah Mus museutus 2, 0 Kota Kinabalu, Sabah Family Sciuridae Sundasciurttsjentinki 1, 1 Sandakan, Sabah Caltosciurus albescens 1, o H. Q., Mt. Kinabalu, Sabah Family Pteropodidae PteroPus vamP]rus 1, o Penempang, Sabah ClnoPterus brach.yotis o, 1 Penampang, Sabah Aethalops alecto o, 5 H. Q., Mt. Kinabalu, Sabah Family Emballonuridae Emballonura rivalis 3, 3 Batu Puteh, Sabah Family Rhinolophidae RhinoloPhus creaghi o, 1 Gomantong, Sabah 2, o Batu Puteh, Sabah Family Hipposideridae HiPPosideros diadema 1, o Poring, Sabah o, 1 Gomantong, Sabah H. garelitus labuanensis 8, 9 Poring, Sabah Family Molossidae Tadarida Plicata 8, 1 Gomantong, Sabah FaTnily Vespertilionidae M]otis horsfieldi 2, 5 Batu Puteh, Sabah ScotoPhilus temmincki 2, 15 Penempang, Sabah MinioPterus sehreibersi l, 1 Batu Puteh, Sabah M. magnater 2, 3 H. Q., Mt. Kinabalu, Sabah M. australis 1, o Batu Puteh, Sabah Small Mammals of Sabah, EastMalaysia U 85

The detailed localities of these samples and the number of individuals examined are summarized in Table 1. Some mammals to be sacrified were injected with O.1 ml to O.5 ml ofO.059/, (WIV) colchicine into the peritoneal cavity and killed one hour later. Bone marrow cells of the femur or the humerus were treated with hypotonic solution (O.080/, Sodium Citrate) fbr 15 min at room temperature, fixed in methanol-acetic (1 : 1) and air-drying. Tissues oflung of the others were cultured by us in the technique described previously (Harada and Yosida, 1978). 20 or more metaphase spreads were counted to determine the diploid number of each specimen. The chromosome were classified according to Levan et al. (1964). Fundamental number (FN) was defined from the number of autosomal arms.

Results and Discussion

1. Primates Tupaia montana (Fig. Ia) The chromosome number is 2n=68 and consist ofone meta-submetacentric pair, two subtelocentric pairs, 30 acrocentric pairs ranging from medium to small, a medium sized submetacentric X and a small acrocentric Y chromosome. This karyotype of Tmpaia montana is indi,gtinguishable from that of T. montana observed by Arrighi et al. (1969).

Table 2. Chromosome number and karyotypes. Karyotype formulae Species 2n FN lllKi& sT ''K X Y Tupaia montana 68 72 2 4 60 M A Rattus rattus 42 58 14 ilr 22 A A Mus muscutus 40 38 38 A A SundasciurusJ'entinki 38 62 24 8 4 SM A Callosciurus atbescens 38 SM A PteroPus vamPyrus 38 62 26 10 SM A ClnoPterus brachyotis 34 26 8 AethaloPs alecto 34 20 14 Embaltonura rivatis 24 44 22 M A RhinoloPhus creaghi 62 60 60 ST ST Hipposideros diadema 32 60 30 SM ST H. galeritus labuanensis 32 60 22 8 SM A Tadarida plicata 48 54 8 38 SM A Mlotis hosfietdi " 50 8 34 SM A ScotoPhilus temmincki 36 48 14 20 SM A MinioPtertts schreibersi 46 50 6 38 SM A M. magnater 46 50 6 38 SM A M. australis 46 50 6 38 SM A 86 M. HARADA & T.KoBAYAsHI

2. Rodentia Rattus rattus (Fig. Ib) The chromosome number of this species is 2n=42. The karyotype consist of7 meta-submetacentric pairs, 13 acrocentric or subtelocentric autosomal pairs, and an acrocentric X and Y. Among them, pairs no. I, 9 and 13 is characterized by acro- centric and subtelocentric polymorphism (Yosida et al., 1965, 1971, I976). In the present analysis, all black rats showed the STIST homomorphy in no. 1 pair. The

se ee aXX & it as ee eb ee ee es Ra ee Ae e" "e ee se " e ee e" k" "es Sk ess es" & ee kk es es "k "k ss Sk " me XY Re b ea Re "e eg ee as

ee es ee ee ee e k ts zz xx

xx zz xx xS ue zz x B XY

c ftfi fiA ft th lt" tsk AA eAes es A XY -10P

Fig. 1. Karyotypes of three species from Sabah. a, Tupaia montana 2n=68. b, Rattus raetus 2n=42. c, ?L/Ius musculus 2n=40. Small Mammals ofSabah, East Mala]sia II 87

no. 9 chromosome pair is AIA homomorphy in two rats, ST!ST homomorphy in one. The no. 13 chromosome pair is SIA heteromorphy in one, SIS homomorphy in 2 rats. One of these specimens had 43 chromosome consisting ofone set ofnormal diploid chromosome complement plus a supernumerary small metacentric chromosome (Fig¥ lb, B). The presence of supernumerary chromosomes has been reported widely in the black rats (Gropp et al., 1970, Yong and Dhaliwal, 1972, Raman and Sharma, 1974, Yosida and Sagai, 1975, Yosida, 1977).

Mus musculus (Fig. Ic) . The chromosome number of this species is 2n -40 and consist ofa graded series of

a Sza AX xx

'i 'i as XX ..t.k x i pt dek it xy s g" s" ess as" xs

s ac "es . es k" Åq. ki ¥-¥ " XY

" e Å~ tw es ` c za e x st :X M

as " KX x n" ia E ,,i, "as "i XY -10p

Fig. 2. Karyotypes of three species from Sabah. Arrow indicates pair of chromosomes with secondary constriction. a, Serndasciurusj'entinki 2n=38. b, Callosciurus albescens 2n=38. c, PteroPus vamP]rus 2n=38. 88 M. HARADA & T. KoBAyAsHI

19 acrocentric pairs, and acrocentric X and Y chromosome.

Sundasciurus,ientinki (Fig. 2a) The chromosome number is 2n=38 and consist of 12 meta-submetacentric, 3 subtelocentric pairs, one acrocentric pair, a submetacentric X and an acrocentric Y chromosome.

Callosciurus albescens (Fig. 2b) The chromosome number is 2n==38 and consist of a submetacentric X and an acrocentric Y. iAs the phesent chromosome preparation is not in good condition, the autosomal complement and the fundamental number were not determined.

3. Chiroptera

PteroPus vamPlrus (Fig. 2c) The chromosome number is 2n 38 and consist of, 8 pairs ofmetacentric, 9 pairs of submetacentric, one pair of subtelocentric, a medium sized submetacentric X and a dot-like acrocentric Y chromosome. One pair of medium sized submetacentric chro- mosome possesses a secondary constriction. Karyotype described here is similar to those ofP. daslmallus inopinatus, P. pselaphon (Tsuchiya, 1979. ), P. giganteus giganteus (Pathak, 1965, Bhatnagar and Srivastava, 1974), and P. poliocephalus (Bogart et al., 1977). Although species of PteroPus demonstrate considerable diversity and morphological variation in general, the chromosomal morphology as revealed by conventional uniform staining indicates that the karyotype ofthis is said as strictly conservative.

(:.]vnoPterus bracnjotis (Fig. 3a) The chromosome number is 2n=34 and consist of 12 meta-submetacentric pairs, two subtelocentric pairs and three acrocentric pairs. As males were not eaxmined, the sex chromosome and the fundamental number were not determined. One medium sized submetacentric pair possesses a prominent secondary constriction. The chromosomal morphology of C. brach]otis is very similar to those of C. sphinx sphinx (Pathak, 1972) and C. sPhinx gangeticus (Pathak, 1965).

AethaloPs alecto (Fig. 3b) The chromosome number is 2n=34 and consist of 10 meta-submetacentric pairs, 7 acrocentric pairs. As male were not examined, the sex chromosomes were not determined. One pair of large sized submetacentric chromosome also possesses a secondary constriction. Presence ofthis maker chromosome pair in the karyotype ofother Megachiropteran species, e.r., C]nopterus sphinx sPhinx, C. sphin,x gangeticus, C. brach]otis, PteroPus giganteus giganteus, P. daslmallus inaPinatus, P. opselaPhon, leschenaulti, P. PoliocePhalus may have been indicated their close evolutionary relationships. Small Mammals ofSabah, East Mala.vsia U 89

Emballonura riwalis (Fig. 3c) The chromosome number is 2n-24 and consist of 1 1 meta-submetacentric pairs, a medium sized submetacentric X and a small acrocentric Y chromosome.

RhinoloPhus creaghi (Fig. 4a) The chromosome number is 2n=62 and consist of 30 acrocentric pairs ranging from medium to small, a subtelocentri'c X and a small subtelocentric Y chromosome. rl"he karyotype of R. creaghi i's identical with that of R. cornutus (Tsuchiya, 1971, Harada, 1973, Ando and Uchida, 1974). ' One pair of acrocentric chromosome has seconclary constriction adjacent to the centromere. This maker chromosome also appear in Rhinolophus hildebrandti (Peterson and Nagorsen, I975), R. darlingi (Peterson and Nagorsen, 1975), R. denti (Peterson

sx xxX a

es " di # ts

ma

bg xx asx

' e" Ae ft" A" M wh as

¥ ¥#

,gs zz xx x mu as es as ee #eemaa rc slk xy 10 V

Fig. 3. Karyotypes of three species from Sabah. Arrows indicate pairs ofchromosomes with secondary constrictiens. a, qvnoPterus brach),otis 2n==34. b, AethaloPs alecto 2n==34. c, Emballonura rival,is 2nÅ}24. 90 M. HARADA & T.KoBAYAsHI and Nagorsen, 1975), R. ferrumeguinum ferrumeeainum (Dulic, 1966), R. f. nippon (Tsuchiya et al., 1972, Harada, 1973, Ando and Uchida, 1974), R. hipposideros (Dulic and Soldatovic, 1969), R, mehelyi (Dulic and Soldatovic, 1969), R. blasii (Dulic, 1966), and R. cornutus cornutus (Sasaki and Hattori, 1970, Tsuchiya, 1971, Harada, 19. 73, Ando and Uchida, 1974).

HipPosideros diadema (Fig. 4b) The chromosome number is 2n=32 and consist of 15 meta-submetacentric pairs, a medium sized submetac.entric X and a small sized subtelocentric Y chromosome.

Hi Posideros galeritus labuanensis (Fig. 4c) The chromosome number is 2n=32 and consist of 1 1 meta-submetacentric pairs, 4 subtelocentric pairs, a large submetacentric X and a small acrocentric Y chromo- some. a A" ns Re ne ee A" "t as Å~"- ae ee ek ee "l kl ev e" si N. ¥tt#¥ .lk¥¥"- ,.-.k. -"¥-e .' ik k" me "

ag¥. ¥k opeF eq¥ pt -- - ts "¥" "¥ -b bg xx b ez us xg xx

SX XI s di z sx xx xs gu xy xx KX xe c "x ecx i wec

as xx

XX -10p Fig. 4. Karyotypes of three species from Sabah. Arrow indicates pair of chromosomes with secondary constriction. a, RhinoloPhus creaghi 2n=62, b, HiPPosideros diadema 2n=32. c, Hipposideros galeritus labuanensis 2n = 32 , Small Mammals ofSabah, East Malaysia II 91

The karyotype of Hi posideros galeritus labuanensis is identical with those of H. bicolor bicolor (Ray-Chaudhuri and Pathak, l966), H. caLffer (Peterson and Nagorsen, 1975), H. ater ater (Ray-Chaudhuri et al., 197I) and H. fulvus (Ray-Chaudhuri et aL, 1971). The karyotype of these species and H. diadema in this paper differ in the position of the cen(romere ofthe largest chromosome pair and in 4 pairs ofmedium to small sized chromosome, these might have resulted from pericentric inversions.

Tadarida Plicata (Fig. 5a) The chromosome number is 2n=48 and consist of four meta-submetacentric pairs, 19 acrocentric pairs ranging from medium to small, a medium sized submetacentric X and a small acrocentric Y chromosome. Some acrocentrics appear to have small secondary arms.

a x XK KX ftA e ee ftR R" A" nA ftA A tt ke ft AA kk es ee su XY bXS xa xx - tee esk as" asrk * ew

tw k e es as¥ es ew wh me ue

ww me di. .t/ es k .im XX .Kg ax XK gx xx ma xx KK XX Ra fi" ftn Aa eD An fte x,. Å~ ee eA .. . xy -10v

Fig. 5. Karyotypes of three species from Sabah. Arrow indicates pair of chromosomes with secondary constriction. a, Tadarida )bticata 2n==48. b, M)otis horsfieldi 2n=44. c, ScotoPhilzts temmincki 2n=-T 36. 92 M. HARADA& T. KoBAyAsHi

Karyotype ofpresent T. plicata is similar to those of T. plicata from Thailand (Tsuchiya et al., 1979), T. bivittata, T.fulminans from Africa (Peterson and Nagorsen, 1975) and T. Iaticaudata, T.femorosacca, T. brasiliensis, EumoPs underwoodi, Tromops davzsonz from America (Warner et al., 1974).

Mvotis horsLfieldi (Fig. 5b) - The chromosome number is 2n=44 and consist . ofthree large meta-submetacentric pairs, one small meta-submetacentric pair, 17 acrocentric pairs ranging from medium to small, a medium sized submetacentric X and a small acrocentric Y chromosome. The morphological difference of chromosome no. 5 in ,genus fL(J"otis have been previously reported inJapanese Myotis (Harada and Yosida, 1978). The chromosome

a as x g" e" \ k"

ge " ee s" " re "e "" k ¥k .X " tl x ew * " ¥sime " me pa "s "# "" xy

b as k" ff tw ec SA ""

es " {" "" ge es ee pt " as es as ms ts x "gee $ , , ag/-- tw' k & ss l" k, ge eee de ma-. XX

cxg )s XK. k fi ft ".- th fi "" kg ' ' ee e" Aa e" "k " pt A ,rw, x. x ¥st k "¥ 'fi k -" - sp xy -10p

Fig. 6. Karyotypes of three species from Sabah . Arrows indicate pairs of chromosomes with secondary constrictions. a, MinioPterus schreibersi 2n=46. b, MinioPterus nta.gnater 2n=T-46. c, Min.ioPterus australis 2n=46. Small Mammals ofSabah, East Malaysia ll 93 no. 5 ofthis species is probably identical to the minute acrocentric chromosome of the standard karyotype.

ScotoPhitzas temmincki (Fig. 5c) The chromosome number is 2n==36 and consist of 6 meta-submetacentric pairs, one subtelocentric pair, 10 acrocentric pairs, a medium sized submetacentric X and a small acrocentric Y chromosome. The smallest acrocentric pair has secondary constriction. Karyotype ofthis species is similar to those ofS. kuhli (Pathak and Sharma, 1969), S. temmincki wroughtoni (Pathak and Sharma, 1969), S. heathi (Bhatngar and Srivastava, 1974) and S. nigrita (Peterson and Nagorson, 1975).

MinioPterus schreibersi (Fig. 6a) The chromosome number is 2n=46 and consist of two large meta-submetacentric pairs, one small meta-submetacentric pair, 19 acrocentric pairs ranging from medium to small, a medium sized submetacentric X and a small acrocentric Y chromosome¥ One small acrocentric pair has secondary constriction adjecent to the centromere.

Miniopterus magnater (Fig. 6b) The karyotype appears to be identical with that of M. schreibersi, and autosomes consist of two pairs oflarge meta-submetacentric, one small meta-submetacentric pair, and 19 acrocentric pairs. Sex chromosome consist ofa submetacentric X and a small acrocentric Y chromosome. An acrocentric with secondary constriction is also present in the karyotype of this species.

MinioPterus australis (Fig. 6c) The chromosome number is 2n==46 and karyotype of this species is similar to M. schreibersi and M. magnater, with two large meta-submetacentric pairs, one small meta-submetacentric pair, 19 acrocentric pairs ranging from medium to small, a submetacentric X and an acrocentric Y chromosome. Karyotypic data given here M. schreibersi, M. magnater, and M. australis are remark- ably similar to those ofM. schreibersiPallidus (Vorontsov et al., 1969) and M. schreibersi fuliginosus (Tsuchiya, 1971, Harada, 1973). It seems likely that the member of this genus has been keeping conservative karyotype in some grade.

References Ando, K. and T. A. Uchida. 1974. Karyotype analysis in Chiroptera. 11. Phylogenetic relationships in the Genus RhinotoPhtts. Sci. Bull. Fac. Agr., Kyushu Unive. 28: 119-129. Arrighi, F. E., M. W. Sorenson, and L.R, Shirley. 1969. Chromosomes of the shrews (Tupaiidae). Cytogenetics 8: 199-208. Bhatnagar, V. S. and M. L. Srivastava. 1974. Somatic chromosomes offour common bats ofAllahabad. aytologia 39: 327-334. Bogart, M.H., A.T. Kumamoto, and K. Benirschke. 1977. The karyotypes of two species of bats (Pteropus PoliocePhalus and H7Psignathus monstrosus). Chromosome Information Service 23: 6-7. 94 MHARADA&T. KoBAyAsH!

Dulic, B. 1966. Kromosomi somatickih stanica kao indikatori interspecificke srodnosti Nekih Rhinolo- fida (Mammalia, Chiroptera). Biol. Glas. 19: 65-96. Dulic, B. and Soldatovic, B. 1969. Les chromosomes de Rhinotophus mehelli Matschie 1900 (Mamrnalia, Chiroptera). Caryologia22:1-5. Gropp, A.,J. Marshall, G. Flatz, M. Olbrich, M. Manyanondha, and A. Santadust. 1970. Chromoso- menpolymorphismus durch Uberzahlige Autosomen: Beobachtungen an der Hausratte (Ratttts rattus). Z. Saugetierk 35: 363-371. Harada, M. 1973. Chromosomes ofnine Chiropteran species inJapan (Chiroptera). La Kromosomo 91: 2885-2895. Harada, M. and T. H. Yosida. 1978. Karyological studies of four Japanese M2otis Bats (Chiriptera, Mammalia). Chromosoma (Berl.) 65: 283-291. Harrison,J.L. 1964. An introduction to the mammals of Sabah. Sabah Society,Jesselton. 224pp. Levan, A., K. Fredga, A. Sandberg. 1964. Nomenclature for centromeric on chromosomes. Hereditas 52: 201-220. Medway,L.1969. ThewildmammalsofMalaya(PeninsularMalaysia)andSingapore. OxfordUniv. Press. Kuala Lumpur. 127 pp. Nagorsen, D. W., J. L. Eger, and R. L. Pterson. 1976. Somatic chromosomes of three African species of bats (Chiroptera), Scotoeczts hindei, Tadarida aeggPtiaca, and Tadarida bemmeleni. Mammalian Chromosomes Newsletter 17: 3. Pathak, S. 1965. Chromosomes of Megachiroptera, Pteropus giganteus .gigantetts Brunnich. Mammalian Chromosomes Newsletter 17: 81. Pathak, S. and T. Sharma. 1969. Chromosomes of five species of Indian Vespertilionid bats. Caryo- logia 22: 35-45. Pathak,S. 1972. Somatic chromosomes ofthe short-nosed , C)nopterus sphinx sPhinx (vahl) (Pteropidae- Megachiroptera-Mammalia) collected from . Mammalian Chromosomes Newsletter 13: 1O-11. Peterson, R. L. and D. W. Nagrsen. I975. Chromosomes of fifteen species of Bats (Chiroptera) from Kenya and Rhodesia. Life Sci. Occas. Pap., R. Ont Mus. 27: 1-14. Raman, R. and Sharma, T. 1974. DNA replication, G- and C-bands and meiotic behaviour ofsuper- numerary chromosomes of Rattus rattus (Linn.). Chromosoma (Berl.) 45: 111-119. Ray-Chaudhuri, S. P. and S. Pathak. 1966. Studies on the chromosomes of bats: listed of worked out Indian species ofChiroptera. Mammalian Chromosomes Newsletter 22: 206. Ray-Chaudhuri, S. P., S. Pathak, and T. Sharma. 1971. Karyotypes of five species of Microchiroptera. Caryologia 24: 239-245. Sasaki, M. and K. Hattori. 1970. Karyotype of three species of bats. Mammalian Chromosomes

Tsuchiya, Newsletter K. 1971. Chromosomes of two insectivorous ll: bat species1. from' Japan (Chiroptera). J. Mammal. Soc. Jap. 5: 114-116. Tsuchiya, K., M. Harada, and T. H. Yosida. 1972. Karyotypes of four species of bats collected in Japan. Ann. Rep. Nat. Inst. Genet.Japan. 22:50-51. Tsuchiya, K. 1979. A contribution to the chromosome study in Japanese Mammals. Proc. Japan Acad. 55: 191-195. Tsuchiya, K., T. H. Yosida, Moriwaki, S. Ohtani, S. Kulta-Utahai, and P. Sudto. 1979. . Karyotypes of twelve species of small mammals from Thailand. Rep. of the Hokkaido Institute of Public H Health. 29: 26-29. Warner,J. W.,J. L. Patton, A. L. Gardner, and R.J. Baker. 1974. Karyotypic analyses of twenty-one species of Molossid Bats (Molossidae: Chiroptera). Can. J. Genet. Cytol. 16: 165-176. Yosida, T. H., Nakamura, and T. Fukaya. 1965. Chromosomal polymorphism in Ratttts rattus (L) collected in Kusudomari and Misima. Chromosoma (Berl.). I6: 70-78. Yosida, T.H., K. Tsuchiya, and K. Moriwaki. 1971. Frequency of chromosome polymorphism of Rattus rattas collected inJapan. Chromosoma (Berl.). 33: 30-40. Yosida, T. H. and T. Sagai. 1975. Variation of C-bands in the chromosornes of several subspecies of Small Mammals ofSabah, EastMalalsia ll 95

Ratttts ratttts. Chromosoma (Berl.). 50: 283-300. Yosida, T. H. 1976. Frequencies of chromosome polymorphism (pairs. no. 1, 9 and 13) in the black rat ofJapan. Proc.Jap. Acad. 52:iro5-408. Yosida, T. H. 1977. Supernumerary chromosomes in the biack rat (Rattus rattus) and their distribution in three geographic variations. Cytogenet. Cell Genet. 18: 149-l59. Yong, H. S. and S. S. Dhaliwal. 1972. Supernumerary (B-) chromosomes in the Malayan house rat, Rattus rattus diardii (Rodentia, Muridae). Chromosoma (Berl.). 36: 256-262.

Addresses of the authors: (Mr) Masashi Harada wtMill5tl Laboratory of Experimental , Osaka City University Medical School ltwrntVJk .A!-E:A]ibt$RwtentzMllpmtg Abeno, Osaka, JAPAN 545 J}ÅqwrrtrFfir$ewgAgMJI-4-54

(Mr) Tsuneaki Kobayashi, D Agr iJxptEt Hfi Biological Laboratory, Yoshida College, Kyoto University B-ts.asJk\&rszzElltz-"Y&S Yoshida, Sakyo-ku, Kyoto, JAPAN 606 ge-".'asiliEs"L.Nil'N =Zsc",,NEIT