Advanced Materials Research Vols. 15-17 (2007) pp. 129-134 online at http://www.scientific.net © (2007) Trans Tech Publications, Switzerland

Selective Oxidation during the Austenitic of a CMnSi T. Van De Putte 1,a , Z. Zermout 2,b , D. Loison 3,c , S. Claessens 2,d , J. Penning 1,e

1Department of Metallurgy and Materials Science, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium Tel.: ++32 (0)9 264 57 61, Fax: ++32 (0)9 264 58 33

2Industry Research Centre Gent – OCAS NV – ARCELOR, J. Kennedylaan 3, B-9060 Zelzate, Belgium Tel.: ++32 (0)9 345 13 66, Fax: ++32 (0)9 345 12 04

3Arcelor Research SA, Voie Romaine, BP30320, F 57283, Maizières-les-Metz, France Tel. : +33 (0)3 87 70 47 20

E-mail: [email protected], [email protected] , [email protected], [email protected], [email protected]

Keywords : Selective oxidation, XPS, Surface state, Austenite Abstract HighstrengthmultiphaseCMnSisteelisincreasinglyusedinpassengercars.SiandMnalloying levelsaretypicallyintherangeof12%inmass.WhileSiimprovesthemechanicalproperties,it considerably deteriorates the galvanisability of steel. Residual water vapour in the reducing gas atmosphereduringtheintercriticalorausteniticannealingresultsintheselectiveoxidationofSiand Mnatthesteelsurface.BesidesMnandSi,Cisoxidizedaswellatthesteelsurface,leadingtothe formation of CO gas and decarburisation of the steel surface. This decarburisation has a major influence on the phase composition in the steel surface region: it shifts the ferrite to austenite transformation to higher annealing temperatures, leading to differences in surface and bulk microstructure. The phase composition influences the solubility and diffusivity of all alloying elements near the surface. The evolution with temperature of the selective oxidation at the steel surface has been studied by interrupted annealing in a protective atmosphere containing residual watervapour.TheinfluenceoftheannealingtemperatureontheselectiveoxidationofMnandSiis characterizedbyXPS(XrayPhotoelectronSpectroscopy)analysis. Introduction Itisknownthatforagoodqualityhotdipgalvanising,anappropriateconcentrationofmetallic atthesteelsurfaceisnecessarytoallowtheformationofaninhibitionlayerbyreactionbetweenthe substrate iron and Al in the zinc bath. It is proved that selective surface oxidation during recrystallizationannealingconsiderablyhampersthegalvanisability[1,2,3,4]. SurfaceselectiveoxidationofaSiandMnalloyedhighstrengthsteelhasalreadybeenstudiedin variousconditions[5]butnotyetthoroughlyduringausteniticannealing. PreviouslyitwasshownbyMahieu[6]thatthereislessexternalselectiveoxidationonaCMnSi steel composition provided that the temperature is high enough to ensure a fully austenitic annealing. Due to the high carbon content the studied high strength however, the ofthesurfaceregionduringannealinghastobeconsidered.Thecarbondepletion near the surface will cause the austenitisation to move up to higher temperatures. That might explainthelargedifferenceinoxidationbehaviourforisothermal annealingat850°C and950°C despitethefactthattheequilibriumbulkphaseisaustenitefrom845°Con. The results presented in this paper are part of the continuation of the research of Mahieu. The purposeofthisstudyistomakeaconfirmationofwhatwasearlierreportedandtoformulatean explaininghypothesis.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the publisher: Trans Tech Publications Ltd, Switzerland, www.ttp.net. (ID: 157.193.118.1-11/01/07,09:02:44) 130 THERMEC 2006 Supplement

Experimental ThechemicalcompositionsofthesteelsusedinthisworkarepresentedinTable1.Thefirstisa laboratorycasting,thesecondoneisanindustrialsteelsuppliedbyArcelor. Table 1: Chemical compositions of the steels used in this work (concentrations in wt%). Material C Mn Si Al P Laboratorysteel 0.25 1.69 1.28 0.06 0.015 Industrialsteel 0.2 1.6 1.6 0.04 0.012 Thesurfacesofthecoldrolledsteelsheets(thickness1mm)wereallgrindedandmirrorpolished beforetherecrystallizationannealinginordertoremoveallinfluencesofthesteelprocessing.Itcan thusbeassumedthatbeforeannealingthesurfaceandbulkpropertiesareidentical. Smallcircular(10mmindiameter)samplesarethenpunchedoutofthepolishedsteelsheetandheat treatedinaN2–5%H 2atmospherewithadewpointof50°C.Theheattreatmentsareperformedin aninfraredfurnacedirectlyconnectedtotheXPSanalysischamber,providingapseudoinsituXPS characterizationoftheannealedsamples.Thetwotypesofannealingcyclesusedinthisstudyare represented in Figure 1. The laboratory steelwas rapidly heated and maintained for 2 minutes at either 850°C or 950°C for 2 minutes, followed by a natural cooling in low vacuum (1 mbar) to preventoxidationduringcooling.Theselectionofthesoakingtemperaturesisbasedontheearlier studyofMahieu[6].ThetheoreticalaustenitisationtemperaturecalculatedbyThermoCalcsoftware for the laboratory steel is 845°C, meaning that the equilibrium phase for both temperatures is austenite. For the industrial alloy an interrupted annealing with low heating speed (6°C/s) was chosen:sampleswereheatedtodifferenttemperaturesfrom450°Cto1000°Candnaturallycooled down in a low vacuum without soaking. The purpose of these annealing tests is to evaluate the evolution of the selective oxidation of the surface during the heating section of the continuous annealing process. The choice of a different annealing cycle for the two steels has no scientific reason.

T 120s T 1000°C 850°C – 950°C 15°C/s 6°C/s

450°C 70°C/s Low vacuum Low vacuum 4°C/s …

time time Figure 1: schematic representation of the used annealing cycles in a temperature versus time graph. Left the isothermal annealing cycle and on the right hand side the interrupted heating treatment. Directly after annealing, the samples are transferred under high vacuum (10 9 mbar) to a XPS analyzer.XPSmeasurementswerecarriedoutonaMicrolab320DfromFisons/VGScientificwith anonmonochromaticAlKαanodeandatakeoffangleof90°.Analysisquantificationwasbasedon sensitivity coefficients proposed by the manufacturer. Afterthisfirstanalysis,somesamples are exposedtoambientairforabout2minutesandarethenanalyzedagain.Metallicironatthesteel surfaceafterannealingwillherebybeoxidized.Themetallicironunderneathanoxidelayerwillbe protected from the high oxygen partial pressure and will remain metallic. This procedure allows distinguishing between oxidizable metallic iron present at the surface and metallic iron located underneathathinoxidelayer.Forgalvanising,onlythemetallicironavailableatthesteelsurface willbeabletoreactwithAlinthezincbathtoformtheinhibitionlayernecessaryforgoodquality galvanising. The surface of the annealed samples is afterwards studied by FEG (Field Emission Gun) SEM secondary electron (SE) imaging and EDX (Energy Dispersive Xray) analysis. A primary acceleratingvoltageof5keVhasbeenusedtoenhancesurfacesensitivity. Advanced Materials Research Vols. 15-17 131

Results High heating rate isothermal annealing Theremarkabledifferenceinoxidationstateofthesurfaceafterisothermalannealingat850°Cand 950°C,previouslyobservedbyMahieu[6],couldbeconfirmed. Figure2showstheXPSspectraof Fe,MnandSibeforeandafterairexposure.Theresultsofthequantificationofthesespectraare presentedinTable2.ForquantificationthesumoftheconcentrationsoftheelementsFe,Mn,Si,C andOwasnormalizedto100%.Thedropintotalironcontentafterairexposureisduetoahigher oxygen concentration in the second analysis. The variations in concentration of Si and Mn after exposureareattributedtoastatisticaldeviationinthespectrumacquisition.

3/2 30 Fe2p 850°C Mn2p 850°C Si2p SiO 850°C Femet 3/2 4.5 2 850°Cair 10 Mn2p 850°Cair 850°Cair 25 950°C 950°C 950°C Mn SiO 950°Cair 2 4 950°Cair 4.0 950°Cair 20 8 1/2 Feox Mn2p Counts/s) Counts/s) Counts/s) 4 4 15 4 6 3.5 10

5 4 3.0 Intensity(10 Intensity(10 Intensity(10 0 704 706 708 710 712 714 635 640 645 650 655 660 665 100 102 104 106 108 110 Bindingenergy(eV) BindingEnergy(eV) BindingEnergy(eV) Figure 2: The Fe, Mn and Si XPS spectra of samples annealed at 850°C and 950°C for 120s, before and after air exposure (air). Annealing was performed in N 2-5%H 2 with a dew point of -50°C. Afterannealingat950°CinaN 25%H 2atmospherewithadewpointof50°C,thesteelsurface seemstobelessoxidizedthanafterannealingat850°C:thereismuchmoremetallicironpresent nearthesurface.Neverthelessnoneofthismetallicironisoxidizable:theXPSspectrabeforeand afterairexposurearealmostidenticalwhichindicatesthatthesurfacecompositionandoxidation statehavenotchanged.Thismeansthatafterannealingat950°Cthesteelsurfaceiscoveredwitha verythinandcontinuousoxidelayer,protectingthemetallicironunderneath.Thisoxidelayercan notbethickerthanafewnanometerbecausealargeamountoftheunderlyingmetallicironisstill detected by XPS. Although not presented, an Al peak was detected in the XPS spectra after annealing at 950°C. It is known that Al strongly segregates to the steel surface at very low dew points[3].Soevenwhileitsbulkconcentrationisverylow,Alcanparticipateinthecoveringoxide layerbyformationofAl 2O3orAlspineloxides.Howeverthecontinuity,thicknessandcomposition ofthislayerarenotyetverifiedbyTEManalysisandsputteringtechniques. Table 2: Quantification results of the XPS spectra in Figure 2. Fe met [at%] Fe ox [at%] Mn[at%] Si[at%] 850°C 7.3 1.2 10.0 18.0 850°Cair 0.7 3.6 9.1 17.3 950°C 26.5 6.3 8.2 5 950°Cair 24 6 8 5.3 After annealing at 850°C, nearly all metallic iron present near the surface is oxidizable. Nevertheless the iron concentration is very small and will probably be insufficient for a good wettabilityongalvanising. The peak heights and positions of the alloying elements have also changed with the annealing temperature. The binding energy of the Mn2p 3/2 electrons is about 641.8eV and 642.7eV for annealing at 950°C and 850°C respectively. The Si2p peaks have 2 constituents at 102.7eV and 104.5eV,respectivelycorrespondingtoMn 2SiO 4andSiO 2[7].Afterannealingat850°C,themain peakcorrespondstoSiO 2whileat950°ChecorrespondstoMn 2SiO 4. 132 THERMEC 2006 Supplement

Afterannealinginthereducingatmosphere,apartthedetectedironatomsareoxidized.Thiscanbe duetothesubstitutionofMnwithironatomsinMn 2SiO 4orduetolowtemperatureironoxidation duringcooling[4,7].

Figure 3: SEM SE (Secondary Electron) images of the surface of the laboratory steel after annealing for 2 minutes at 850°C (left) and 950°C (right). Annealing at 850°C results in a severely oxidized surface covered with a SiO 2 film and lenticular Mn 2SiO 4 oxides. After annealing at 950°C the surface seems to be only partially oxidized. It is decorated with Mn 2SiO 4 oxides in a facetted arrangement as shown in the insert of the right image. SEMobservationsandEDXanalysisconfirmtheXPSresults.Thesampleannealedat850°Cshow astronglyoxidizedsurfacewith2differenttypesofoxide:largelenticularoxides(Mn 2SiO 4)and veinedoxidefilms(SiO 2).Allthegrainboundariesarestronglyoxidizedandcontainhighlevelsof SiO 2(blacklinesintheSEimageof Figure3). Onlargeareasofthesamplesannealedat950°Cnovisualoxidescouldbedetected.Somegrains presentlargerlensshapedMn 2SiO 4oxidesbutmostgrainsaredecoratedwithsmallglobularoxides and exhibit a certain faceting typical for each (sub)grain. The grain boundaries are still strongly oxidizedbutalsocontainthesesmalloxidesapartfromtheSiO 2film. From the XPS and SEMEDX analysis it can be concluded that the surface after isothermal annealingisalmostcompletelycoveredwithanoxidefilmatbothtemperatures.At850°Cthefilm isthick,mainlycomposedofSiO 2andseverallenticularMn 2SiO 4oxideshavegrownontopofit. At 950°C the oxide film is very thin and the surface is decorated with small globular Mn 2SiO 4 oxides. Low heating rate interrupted annealing Lowheatingrateinterruptedannealingtestshavebeenperformedtoevaluatetheevolutionofthe surfaceoxidationduringtheheatingstage. Figure 4showstheFe,MnandSispectra atdifferent stagesduringtheslowheating.Thequantificationresultsforthesespectraarepresentedin Figure5. Only the samples heated to a temperature of 850°C and higher have been analyzed after air exposure.AstheSi2pspectrumshowedadoublepeakconfiguration,thespectrumwasdecomposed inapeakat104eVandapeakat102.5eV,ascribedtoSiO 2andMn 2SiO 4respectively. Advanced Materials Research Vols. 15-17 133

35 16 SiO 3/2 5.5 Si2p 2 Fe2p 450°C Mn2p 450°C 450°C 30 650°C 14 3/2 650°C 650°C Mn2p 5.0 850°C 850°C 850°C 25 1000°C 12 1000°C Mn SiO 4.5 2 4 1000°C 1/2 20 10 Mn2p 4.0 15 8 3.5 10 6 3.0 Intensity(Counts/s)

Intensity(Counts/s) 5 Intensity(Counts/s) 4 2.5 0 2 100 102 104 106 108 110 704 706 708 710 712 714 635 640 645 650 655 660 665 Bindingenergy(eV) BindingEnergy(eV) Bindingenergy(eV) Figure 4: Fe, Mn and Si XPS spectra after in-situ interrupted annealing to various temperatures (heating rate of 6°C/s) in an N 2-5%H 2 atmosphere with a dew point of -50°C. At 450°C the iron at the steel surface is completely reduced and there is almost no selective oxidationofSiandMn.Afterheatingto650°Cthereisstillalotofmetallicironpresentatthe surfacebuttheselectiveoxidationhasstarted.ThefirstoxidegrowingonthesurfacehasalargeMn concentration.Attemperaturesabove650°C,selectiveoxidationofsiliconbecomespredominant. At850°Ctheironconcentrationreachesitslowestlevel.Thesurfaceisnearlycompletelycovered with silicon oxide (SiO 2) at this temperature. As the temperature further increases, more iron appearsbackatthesurfaceandtheamountofselectiveoxidationdecreases.TheamountofSiO 2 dropswhileMn 2SiO 4oxidesstarttogrow.Thepercentageofmetallicironthatwasoxidizedafter air exposure increases from 3.5% to 60% by increasing the heating temperature from 850°C to 1000°C.

50 Fe (at%) 100 Si met 45 25 SiinSiO Fe (at%) 2 40 ox 80 SiinMn 2SiO 4 35 20 Fe met,oxidizable (%) Mn 30 60 15 25 % 20 40 10 15 10 20 5

concentration(at%) 5 Concentration(at%) 0 0 0 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000 Temperature(°C) Temperature(°C) Figure 5: Quantification results of the in-situ XPS analysis after interrupted annealing of the industrial Si-TRIP steel. Atomic percentages of metallic and oxidized iron after heating and the calculated percentage of oxidizable metallic iron after air exposure (left). Atomic concentrations of Mn and Si in totality and in each compound (right). Discussion Itseemsrathercontradictorythatanincreaseoftheannealingtemperaturecausesadecreaseofthe selective oxidation. This is actually not in accordance with the Wagner theory [8] for selective oxidationthatpredictsastrongerexternaloxidationonincreasingtemperature.Duetothehigher activationenergyfordiffusionofSiandMncomparedtooxygen,theoutwardfluxofoxidizable elementswillincreasefasterthantheinwardfluxofoxygenwithincreasingtemperature[9]. Assumptions can be made about the change in oxidation state on increasing the annealing temperatureabove850°Cbutnoneofthemareyetcertified. 134 THERMEC 2006 Supplement

OnepossibilityisthetransformationoftheSiO 2oxidefilmintolenticularMn 2SiO 4oxides.Hereby atwodimensionalSiO 2filmistransformedina3dimensionallenticularMn 2SiO 4oxide.Sincethe latterhasasmallersurfaceareaforthesameamountofSitheninaSiO 2film,thistransformation cancausethedecreasingXPSsignalofSi.ItmightalsocausetheincreasingFeconcentrationasa part of the surface becomes uncovered by SiO 2 through this transformation. Upon prolonged annealing however this new metallic iron surface is not recovered by a thick SiO 2 film. It is probablyrecoveredbyaverythinAl 2O3film. On the other hand, it is rather strange that the change in oxidationbehaviour coincideswiththe austenitetransformationofacarbondepletedsurface.Thereforeanotherpossibilityforthedecrease ofselectiveoxidationcanbefoundinthedecreaseofthediffusioncoefficientsforSi,MnandOby thetransformation.Hereby,thedecreaseofthediffusioncoefficientsofSiandMnismuchhigher thanforoxygen,slowingdowntheSiandMnsurfaceenrichment.Furthermoretheappearanceof newaustenite glissileplanesatthesurface can causeanincreaseoftheironconcentrationanda breakdownofsurfaceoxides. Conclusions TheselectiveoxidationduringrecrystallizationannealingofaSiandMnalloyedhighstrengthsteel isinvestigatedinareducingN 25%H 2atmospherewithadewpointof50°C. It is shown that annealing into the austenitic region decreases the amount of surface selective oxidation of Si and Mn for this steel type. The amount of metallic iron at the surface decreases between450°Cand850°Cduringtheheatingstageofthecontinuousannealingcycle.Whenheated above850°C,theamountofmetallicironstartstoincreaseagainattheexpenseoftheamountof selectiveoxides.Thechangeinoxidationstatecanbe explainedbydifferenteffects; astructural transformationoftheoxidelayerorasubstratetransformationinducedeffect.Theamountmetallic ironatthesteelsurfaceavailablefortheformationoftheinhibitionlayerinthezincbath,called oxidizableironismeasured. Itincreaseswithtemperatureabove850°Cduringtheheatingstage. Uponsoakinghoweverthesurfacewasagaincoveredbyaverythinoxidelayer. References [1] J.Mahieu,S.ClaessensandB.C.DeCooman:Metall.AndMaterialsTrans.A,2001,32A, pp.29052908. [2] J.Mahieu,S.ClaessensandB.C.DeCooman:InGalvatech‘01ConferenceProceedings, Brussels,2001,pp.644651 [3] P.Drillet,Z.Zermout,D.Bouleau,J.Mataigne,S.Claessens:InGalvatech’04Conference Proceedings,Chicago,2004,pp.11231134. [4] X. Vanden Eynde, J.P. Servais, L. Bordignon and M. Lamberigts: In Galvatech ’01 ConferenceProceedings,Brussels,2001,pp.187194. [5] X.VandenEynde,J.P.Servais,M.Lamberigts:InGalvatech’04ConferenceProceedings, Chicago,2004,pp.361372. [6] J. Mahieu, S.Claessens, B.C. De Cooman andF. Goodwin:In Galvatech ’04 Conference Proceedings,Chicago,2004,pp.529538. [7] X.VandenEynde,J.P.Servais,M.Lamberigts:Surf.InterfaceAnal.2002,33,pp.322329. [8] C.Wagner:ZeitschriftfürElectrochemie,63(7),1959,pp.772782. [9] J.M. Mataigne, M. Lamberigts, V. Leroy:Developments intheannealing of sheet steels, EditedbyPradhanandI.Gupta,Theminerals,MetalsandMaterialsSociety,1992,pp.511 528.