Diccionario Biográfico De Matemáticos

Total Page:16

File Type:pdf, Size:1020Kb

Diccionario Biográfico De Matemáticos DICCIONARIO BIOGRÁFICO DE MATEMÁTICOS Ubaldo Usunáriz Balanzategui Pablo Usunáriz Sala 1 2 ÍNDICE Páginas Preámbulo 5 Diccionario 7 Tabla cronológica 647 Algunos de los problemas y conjeturas 729 expuestos en el cuerpo del diccionario Bibliografía consultada 741 3 4 PREÁMBULO Este Diccionario Biográfico de Matemáticos incluye más de 2040 reseñas de matemáticos, entre las que hay unas 280 de españoles y 36 de mujeres (Agnesi, Blum, Byron, Friedman, Hipatia, Robinson, Scott, etc.), de las que 11 son españolas (Casamayor, Sánchez Naranjo, Sanz-Solé, etc.). Se ha obtenido la mayor parte de las informaciones por medio de los libros recogidos en el apéndice “Bibliografía consultada”; otra parte, de determinadas obras matemáticas de los autores reseñados (estas obras no están incluidas en el citado apéndice, lo están en las correspondientes reseñas de sus autores). Las obras más consultadas han sido las de Boyer, Cajori, Kline, Martinón, Peralta, Rey Pastor y Babini, Wieleitner, las Enciclopedias Espasa, Británica, Larousse, Universalis y Wikipedia. Entre las reseñas incluidas, destacan las siguientes, en orden alfabético: Al-Khuwairizmi, Apolonio, Arquímedes, Jacob y Johann Bernoulli, Brouwer, Cantor, Cauchy, Cayley, Descartes, Diofanto, Euclides, Euler, Fermat, Fourier, Galileo, Gauss, Hilbert, Lagrange, Laplace, Leibniz, Monge, Newton, Pappus, Pascal, Pitágoras, Poincaré, Ptolomeo, Riemann, Weierstrass, etc. Entre los matemáticos españoles destacan las de Echegaray, Etayo, Puig Adam, Rey Pastor, Reyes Prósper, Terradas (de quien Einstein dijo: “Es uno de los seis primeros cerebros mundiales de su tiempo y uno de los pocos que pueden comprender hoy en día la teoría de la relatividad”), Torre Argaiz, Torres Quevedo, los Torroja, Tosca, etc. Se han incluido varias referencias de matemáticos nacidos en la segunda mitad del siglo XX. Entre ellos descuellan nombres como Perelmán o Wiles. Pero para la mayor parte de ellos sería conveniente un mayor distanciamiento en el tiempo para poder dar una opinión más objetiva sobre su obra. Las reseñas no son exhaustivas. Si a algún lector le interesa profundizar en la obra de un determinado matemático, puede utilizar con provecho la bibliografía incluida, o también las obras recogidas en su reseña. En cada reseña se ha seguido la secuencia: nombre, fechas de nacimiento y muerte, profesión, nacionalidad, breve bosquejo de su vida y exposición de su obra. En algunos casos, pocos, no se ha podido encontrar el nombre completo. Cuando sólo existe el año de nacimiento, se indica con la abreviatura “n.”, y si sólo se conoce el año de la muerte, con la abreviatura “m.”. Si las fechas de nacimiento y muerte son sólo aproximadas, se utiliza la abreviatura “h.” –hacia–, abreviatura que también se utiliza cuando sólo se conoce que vivió en una determinada época. Esta utilización es, entonces, similar a la abreviatura clásica “fl.” –floreció–. En algunos casos no se ha podido incluir el lugar de nacimiento del personaje o su nacionalidad. No todos los personajes son matemáticos en sentido estricto, aunque todos ellos han realizado importantes trabajos de índole matemática. Los hay astrónomos como, por ejemplo, Brahe, Copérnico, Laplace; físicos como Dirac, Einstein, Palacios; ingenieros como La Cierva, Shannon, Stoker, Torres Quevedo (muchos matemáticos, considerados primordialmente como tales, se formaron como ingenieros, como Abel Transon, Bombelli, Cauchy, Poincaré); geólogos, cristalógrafos y mineralogistas como Barlow, Buerger, Fedorov; médicos y fisiólogos como Budan, Cardano, Helmholtz, Recorde; naturalistas y biólogos como Bertalanfly, Buffon, Candolle; anatomistas y biomecánicos como Dempster, Seluyanov; economistas como Black, Scholes; estadísticos como Akaike, Fisher; meteorólogos y climatólogos como Budyko, Richardson; filósofos como Platón, Aristóteles, Kant; religiosos y teólogos como Berkeley, Santo Tomás; historiadores como Cajori, Eneström; lingüistas como Chomsky, Grassmann; psicólogos y pedagogos como Brousseau, Fishbeim, Piaget; lógicos como Boole, Robinson; abogados y juristas como Averroes, Fantet, Schweikart; escritores como Aristófanes, Torres de Villarroel, Voltaire; arquitectos como Le Corbusier, Moneo, Utzon; pintores como Durero, Escher, Leonardo da Vinci (pintor, arquitecto, científico, ingeniero, escritor, lingüista, botánico, zoólogo, anatomista, geólogo, músico, escultor, inventor, ¿qué es lo que 5 no fue?); compositores y musicólogos como Gugler, Rameau; políticos como Alfonso X, los Banu Musa, los Médicis; militares y marinos como Alcalá Galiano, Carnot, Ibáñez, Jonquières, Poncelet, Ulloa; autodidactos como Fermat, Simpson; con oficios diversos como Alcega (sastre), Argand (contable), Bosse (grabador), Bürgi (relojero), Dase (calculista), Jamnitzer (orfebre), Richter (instrumentista), etc. También hay personajes de ficción como Sancho Panza (siendo gobernador de la ínsula Barataria, se le planteó a Sancho una paradoja que podría haber sido formulada por Lewis Carroll; para resolverla, Sancho aplicó su sentido de la bondad) y Timeo (Timeo de Locri, interlocutor principal de Platón en el diálogo Timeo). Se ha incluido en un apéndice una extensa “Tabla Cronológica”, donde en columnas contiguas están todos los matemáticos del Diccionario, las principales obras matemáticas (lo que puede representar un esbozo de la historia de la evolución da las matemáticas) y los principales acontecimientos históricos que sirven para situar la época en que aquéllos vivieron y éstas se publicaron. Cada matemático se sitúa en el año de su nacimiento, exacto o aproximado; si no se dispone de este dato, en el año de su muerte, exacto o aproximado; si no se dispone de ninguna de estas fechas, en el año aproximado de su florecimiento. Si sólo se dispone de un periodo de tiempo más o menos concreto, el personaje se clasifica en el año más representativo de dicho periodo: por ejemplo, en el año 250 si se sabe que vivió en el siglo III, o en el año -300 si se sabe que vivió hacia los siglos III y IV a.C. En el apéndice “Algunos de los problemas y conjeturas expuestos en el cuerpo del Diccionario”, se ha resumido la situación actual de algunos de dichos problemas y conjeturas. También se han incluido los problemas que Hilbert planteó en 1900, los expuestos por Smale en 1997, y los llamados “problemas del milenio” (2000). No se estudian con detalle, sólo se indica someramente de qué tratan. Esta segunda edición del Diccionario Biográfico de Matemáticos tiene por objeto su puesta a disposición de la Escuela de Ingenieros de Minas de la Universidad Politécnica de Madrid. Laredo. Verano 2012 6 DICCIONARIO 7 8 A Abbati, Pietro (1768-1842). Matemático italiano. Nació en Módena, donde estudió y enseñó en su Universidad. Comunicó (1802) por carta a Ruffini la demostración del teorema consistente en que el orden de un subgrupo divide el orden del grupo (resultado también obtenido por Lagrange), ampliando a las ecuaciones de grado superior a cinco la imposibilidad de su resolución, en el caso general, mediante radicaciones sucesivas partiendo de sus coeficientes. Abd Al-Hamid Ibn-Turk (h. 830). Matemático árabe, probablemente de origen turco. Vivió y trabajó en Bagdad a principios del siglo IX. Escribió Sobre las necesidades lógicas en las ecuaciones mixtas. Este manuscrito debía formar parte de un libro sobre álgebra, muy parecido al de Al-Khuwarizmi y publicado aproximadamente en la misma época, o quizá antes. Las Necesidades lógicas presentan una estructura y una demostración geométrica similar al Álgebra de Al-Khuwarizmi, siendo en un aspecto más completa ya que demuestra por medio de figuras geométricas que una ecuación cuadrática no tiene solución cuando su discriminante es negativo. Las analogías entre ambas obras parecen indicar que el desarrollo del álgebra no era un fenómeno reciente cuando se escribieron. Abdank-Abakanowicz, Bruno (1852-1900). Ingeniero e inventor polaco. Nació en Vilkmergé (hoy Lituania, entonces Rusia, por lo que a veces se le considera lituano y otras ruso). Estudió en la Universidad Técnica de Riga. Fue profesor en la Universidad Politécnica de Lvov (hoy, Lviv, Ucrania). Construyó y comercializó su intégrafo (1878), aparato que dibujaba la curva integral recorriendo una de sus puntas la gráfica de la función integrando Escribió la obra Intégrafos: la curva integral y sus aplicaciones. Estudio sobre un nuevo sistema de integradores mecánicos (1886). En ella estudió la curva cuadratriz que lleva su nombre. Publicó también diversas obras de divulgación científica. Abdel Aziz, Y. J. (h. 1971). En relación al análisis matemático del gesto deportivo mediante fotogrametría tridimensional, desarrolló (1971), junto con Karara, algoritmos por los que es posible realizar una transformación lineal directa de las coordenadas espaciales de los puntos que definen los sólidos rígidos del sistema en estudio, permitiendo obtener las coordenadas planas que representan las posiciones adoptadas por el deportista, así como las del sistema de referencia. Abel, Niels Henrik (1802-1829). Matemático noruego. Nació en Findö, cerca de Stavanger, hijo del pastor protestante de dicha localidad, en el seno de una familia muy numerosa. Estudió en Cristianía (actual Oslo). A los dieciséis años su maestro, Berndt Michael Holboe (1795-1850), reconoció el genio de Abel, le aconsejó leer los libros de los matemáticos más eminentes, incluido Investigaciones de aritmética de Gauss, y predijo que se convertiría en el mejor matemático de todo el mundo. En sus lecturas, Abel se dio cuenta de que Euler sólo había demostrado
Recommended publications
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Medieval Mathematics
    Medieval Mathematics The medieval period in Europe, which spanned the centuries from about 400 to almost 1400, was largely an intellectually barren age, but there was significant scholarly activity elsewhere in the world. We would like to examine the contributions of five civilizations to mathematics during this time, four of which are China, India, Arabia, and the Byzantine Empire. Beginning about the year 800 and especially in the thirteenth and fourteenth centuries, the fifth, Western Europe, also made advances that helped to prepare the way for the mathematics of the future. Let us start with China, which began with the Shang dynasty in approximately 1,600 B. C. Archaeological evidence indicates that long before the medieval period, the Chinese had the idea of a positional decimal number system, including symbols for the digits one through nine. Eventually a dot may have been used to represent the absence of a value, but only during the twelfth century A. D. was the system completed by introducing a symbol for zero and treating it as a number. Other features of the Shang period included the use of decimal fractions, a hint of the binary number system, and the oldest known example of a magic square. The most significant book in ancient Chinese mathematical history is entitled The Nine Chapters on the Mathematical Art. It represents the contributions of numerous authors across several centuries and was originally compiled as a single work about 300 B. C. at the same time that Euclid was writing the Elements. However, in 213 B. C., a new emperor ordered the burning of all books written prior to his assumption of power eight years earlier.
    [Show full text]
  • Conservación De Vidrieras Históricas
    Conservacion de vidrieras historicas Analisis y diagnostico de su deterioro. Restauracion. - •.' ; --- I ; :.. -' -- .......- . /" � --- � .:.:-- - -,, --- " Conservacion de vidrieras historicas Analisis y diagnostico de su deterioro. Restauracion. Aetas de la reunion Seminario organizado por The Getty Conservation Institute y la Universidad Internaeional Menendez y Pelayo, en eonjunto con el Instituto de Conservaeion y Restauraeion de Bienes Culturales Santander, Espana 4-8 de julio de 1994 Coordinadores Miguel Angel Corzo, The Getty Conservation Institute Nieves Valentin, Instituto del Patrimonio Historieo Espanol, Ministerio de Cultura THE GETTY CONSERVATION INSTITUTE Los ANGELES Portada: Catedral de Leon. Detalle de la firma del arquitecto Juan Bautista Lazaro y del pintor Alberto Gonzales. Fotografiacortesi a de IPHE. Contraportada: Catedral de Leon. Otro detalle de la vidriera. Fotografiacortesia de IPHE. Miguel Angel Corzo, Coordinador Nieves Valentin, Coordinadora Helen Mauch!, Coordinadora de publicaci6n Fernando Cortes Pizano, Traductor JeffreyCohen, Diseiiadorgra fico de la serie Marquita Takei, Diseiiadoragra fica del libro Westland Graphics, Impresora Impreso en los Estados Unidos de America 10 9 8 7 6 5 4 3 2 1 © por The J. Paul Getty Trust Todos los derechos reservados The Getty Conservation Institute trabaja internacionalmente para promover la apreciacion y conservacion del patrimonio cultural del mundo para el enriquecimiento y uso de las generaciones presentes y futuras. El Instituto es un programa operativo de The J. Paul Getty Trust. Library of Congress Cataloging-in-Publication Data Conservacion de vidrieras historicas: analisis y diagnostico de su deterioro: restauracion / [semina rio organizado por The Getty Conservation Institute y la Universidad Internacional Menendez y Pelayo, en conjunto con el Instituto de Conservacion y Restauracion de Bienes Culturalesl; coordinadores de la conferencia, Miguel Angel Corzo, Nieves Valentin.
    [Show full text]
  • Upper Darby High School, 601 N Lansdowne Ave, Drexel Hill, PA
    Basalt Thickness of Mare Tranquillitatis using Two Methods Upper Darby High School, 601 N Lansdowne Ave, Drexel Hill, PA Gutama Biru, Chris DeMott, Galen Farmer, Daniel Gordon, Isabel Hunt, Kenneth Lin, Thomas Nguyen, Zach Thornton, Vince Tran, Most Yeasmin PROBLEM ISOPACH MAPS The purpose of this experiment is to evaluate two methods of calculating basalt thickness in Mare Tranquillitatis. Figure 1 is the original isopach map used for reference. Figures 2 and 3 are isopach maps made using 3DField software. INTRODUCTION Lunar maria are large impact craters or basins that have been filled with basalt. While the Moon was still cooling, lava seeped into these basins through cracks, cooling to form the maria. This study compares two methods of determining the thickness of basalt in Mare Tranquillitatis: the Pre-Mare Crater Method and the Post- Figure 2. Pre-Mare Crater Isopach Mare Crater Method. The first method uses craters from before the mare was formed and the latter uses craters from after the mare was formed, as the names imply. Previous work ( De HONs map reference) has been conducted using these methods to Figure 1. Reference Map (DeHon 1974) calculate mare thickness; however the tools used to collect that data are outdated. The current study, conducted using data from the Lunar Reconnaissance Orbiter and Clementine camera, compares the two methods for determining mare thickness. The Pre-Mare Crater Method used craters that were formed inside the large impact basins before they filled with lava. By measuring the diameter of these craters, the original rim height can be estimated using a relationship defined by Pike (1974, 1977).
    [Show full text]
  • The Moon at a Distance of 384,400 Km from the Earth, the Moon Is Our Closest Celestial Neighbor and Only Natural Satellite
    The Moon At a distance of 384,400 km from the Earth, the Moon is our closest celestial neighbor and only natural satellite. Because of this fact, we have been able to gain more knowledge about it than any other body in the Solar System besides the Earth. Like the Earth itself, the Moon is unique in some ways and rather ordinary in others. The Moon is unique in that it is the only spherical satellite orbiting a terrestrial planet. The reason for its shape is a result of its mass being great enough so that gravity pulls all of the Moon's matter toward its center equally. Another distinct property the Moon possesses lies in its size compared to the Earth. At 3,475 km, the Moon's diameter is over one fourth that of the Earth's. In relation to its own size, no other planet has a moon as large. For its size, however, the Moon's mass is rather low. This means the Moon is not very dense. The explanation behind this lies in the formation of the Moon. It is believed that a large body, perhaps the size of Mars, struck the Earth early in its life. As a result of this collision a great deal of the young Earth's outer mantle and crust was ejected into space. This material then began orbiting Earth and over time joined together due to gravitational forces, forming what is now Earth's moon. Furthermore, since Earth's outer mantle and crust are significantly less dense than its interior explains why the Moon is so much less dense than the Earth.
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]
  • NORTHERN ARIZONA UNIVERSITY BULLETIN • Flagstaff GENERAL CATALOG 1966-1967
    •w •w * C^O^y NORTHERN ARIZONA UNIVERSITY BULLETIN • Flagstaff GENERAL CATALOG 1966-1967 IMPORTANT ANNOUNCEMENT The Board of Regents of the Universities and State College of Arizona has granted authority for ' ARIZONA STATE COLLEGE to become NORTHERN ARIZONA UNIVERSITY on May 1, 1966 Due to the fact that the change will take place within the period covered by the 1965-1967 general bulletin, any reference to Arizona State College will refer to Northern Arizona University after the scheduled date above. Other changes in keeping with the change of name and status of the institution will appropriately be redesignated at the given date. NORTHERN ARIZONA UNIVERSITY BULLETIN • Flagstaff GENERAL CATALOG 1966-1967 The Northern Arizona University Bulletin is published month­ ly, during the months of January, February, March, April, May, June, July and- August at Flagstaff, Arizona. Entered as second class matter July 1, 1929 at the Post Office at Flagstaff, Arizona, under Act of August 24, 1912. Second class postage paid at Flagstaff, Arizona. Announcements in this catalog concerning regrulations, fees, curricula, or other matters are subject to change without notice. VOLUME 48 MAY 1966 -NUMBER 5 2 CALENDAR The Administration reserves the right to make changes in the calendar below. SUMMER SESSION 1965 1966 First Term June 14-July 17 June 13-July 16 Second Term July 19-August 20 July 18-August 19 FALL SEMESTER 1965-1966 1966-1967 Faculty Meetings Sept. 4 & 7 Sept. 3 & 6 Residence Halls Open Sept. 5 Sept. 4 Freshman Activities Begin Sept. 8 Sept. 7 President's Reception Sept. Sept. Registration Sept.
    [Show full text]
  • Intel ISEF 2016 Special Awards Ceremony | Society for Science 5/13/16, 1:14 PM
    Intel ISEF 2016 Special Awards Ceremony | Society for Science 5/13/16, 1:14 PM Press Room Intel ISEF Intel ISEF 2016 Special Awards Ceremony 12:05AM, May 13, 2016 May 12, 2016, Phoenix, AZ – Society for Science & the Public, in partnership with the Intel Foundation, announced Special Awards of the Intel ISEF 2016. Student winners are ninth through twelfth graders who earned the right to compete at the Intel ISEF 2016 by winning a top prize at a local, regional, state or national science fair. Acoustical Society of America The Acoustical Society of America is the premier international scientific society in acoustics, dedicated to increasing and diffusing the knowledge of acoustics and promoting its practical applications. First Award of $1,500 PHYS039 Generation of Beat Sound of Korean Bell with a Bicycle Rim Kim Dae Hyun, 18, Pung Duck High School, Gyeonggi Province, South Korea Second Award of $500 PHYS014T Acoustic Microfluidics with Tiny Droplets Adrian Lenkeit, 16, St. Michael Gymnasium, Bad Munstereifel, Germany Jan Matthias Schafers, 17, St. Michael Gymnasium, Bad Munstereifel, Germany Honorable Mention EBED018 Development of the First Ever Low-Cost Open-Source Hearing Test and Hearing Aid Mukund Venkatakrishnan, 16, duPont Manual High School, Louisville, Kentucky ENBM023 A Feasible Solution to High Frequency Loss Based on Transposing Fundamental Frequency Yiwei Song, 18, High School Affiliated to Fudan University, Shanghai, China ENEV107T The Wobble: A Sustainable Noise Barrier Consisting of Noise Absorbing Materials and a Revolutionary Shape Marie-Anne Irene de Gier, 16, Atheneum College Hageveld, Heemstede, Netherlands Bram Janssen, 15, Atheneum College Hageveld, Heemstede, Netherlands https://www.societyforscience.org/content/press-room/intel-isef-2016-special-awards-ceremony Page 1 of 44 Intel ISEF 2016 Special Awards Ceremony | Society for Science 5/13/16, 1:14 PM The first place award winner's school will be awarded $500 and the student's mentor will be awarded $250.
    [Show full text]