<<

U.S. Department of the Interior Prepared for the Scientific Investigations Map 3316 U.S. Geological Survey National Aeronautics and Space Administration Sheet 1 of 2

180° 0° 5555°° –55°

Rowland 150°E MAP DESCRIPTION used for printing. However, some selected well-known features less that 85 km in diameter or 30°E 210°E length were included. For a complete list of the IAU-approved nomenclature for the , see the This image mosaic is based on data from the Lunar Reconnaissance Orbiter Wide Angle 330°E 6060°° Gazetteer of at http://planetarynames.wr.usgs.gov. For lunar mission C l a v i u s –60°–60˚ Camera (WAC; Robinson and others, 2010), an instrument on the National Aeronautics and names, only successful landers are shown, not impactors or expended orbiters. Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The WAC is a seven band (321 nanometers [nm], 360 nm, 415 nm, 566 nm, 604 nm, 643 nm, and 689 nm) push frame imager with a 90° field of view in monochrome mode, and ACKNOWLEDGMENTS B i r k h o f f 60° field of view in color mode. From the nominal 50-kilometer (km) polar orbit, the WAC This map was made possible with thanks to NASA, the LRO mission, and the Lunar Recon- Scheiner acquires images with a 57-km swath-width and a typical length of 105 km. At nadir, the pixel naissance Orbiter Camera team. The map was funded by NASA's Planetary Geology and Geophys- scale for the visible filters (415–689 nm) is 75 meters (Speyerer and others, 2011). Each month, ics Cartography Program. Sommerfeld the WAC provided almost complete coverage of the Moon. Rosenberger REFERENCES PROJECTION Archinal, B.A. (Chair), A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Stebbins The Mercator projection is used between latitudes ±57°, with a central meridian at 0° Fukushim, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G.A., Oberst, J., Gruemberger 7070°° longitude and latitude equal to the nominal scale at 0°. The Polar Stereographic projection is used Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., and Williams, I.P., 2011, Report of –70° Manzinus Gamow for the regions north of the +55° parallel and of the –55° parallel, with a central meridian van't Roberts the IAU Working Group on cartographic coordinates and rotational elements—2009: Celestial Hoff 120°E set for both at 0° and a latitude of true scale at +90° and -90°, respectively. The adopted spherical Mechanics and Dynamical Astronomy, v. 109, no. 2, p. 101–135, doi:10.1007/s10569-010- Moretus 60°E 240°E Yablochkov radius used to define the maps scale is 1737.4 km (Lunar Reconnaissance Orbiter Project Lunar 9320-4. 300°E Karpinskiy Geodesy and Cartography Working Group, 2008; Archinal and others, 2011). In projection, the Davies, M.E., and Colvin, T.R., 2000, Lunar coordinates in the regions of the landers: pixels are 100 meters at the equator. Journal of Geophysical Research, v. 105, no. E8, p. 20,277–20,280. COORDINATE SYSTEM Folkner, W.M., Williams, J.G., and Boggs, D.H., 2008, The planetary and lunar ephemeris DE 421: Seares Jet Propulsion Laboratory Memorandum IOM 343R-08-003, 31 p., at Milankovič The Wide Angle Camera images were referenced to an internally consistent inertial coordi- ftp://ssd.jpl..gov/pub/eph/planets/ioms/de421.iom.v1.pdf. nate system, derived from tracking of the LRO spacecraft and crossover-adjusted Lunar Orbiter Folkner, W.M., Williams, J.G., and Boggs, D.H., 2009, The planetary and lunar ephemeris DE 421: Laser Altimeter (LOLA) data that were used together to determine the orbit of LRO in inertial Interplanetary Network Progress Report 42-178, 34 p., at Pontécoulant space ( and others, 2011). By adopting appropriate values for the orientation of the Moon, http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf. 8080°° S c h w ar z s c h i l d as defined by the International Astronomical Union (IAU; Archinal and others, 2011), the images –80° were orthorectified into the planet-fixed coordinates (longitude and latitude) used on this map. Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008, A Pingré Helmholtz standardized lunar coordinate system for the Lunar Reconnaissance Orbiter and lunar datas- B a i l l y Plaskett The coordinate system defined for this product is the mean /polar axis (ME) system, sometimes called the mean Earth/rotation axis system. The ME system is the method most often ets: Lunar Reconnaissance Orbiter Project and Lunar Reconnaissance Orbiter Project Lunar used for cartographic products of the past (Davies and Colvin, 2000). Values for the orientation Geodesy and Cartography Working Group Paper, v. 5, at P o c z o b u t t of the Moon were derived from the Jet Propulsion Laboratory Developmental Ephemeris (DE) http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf. 421 planetary ephemeris (Williams and others, 2008; Folkner and others, 2008; 2009) and rotated Mazarico, E., Rowlands, D.D., Neumann, G.A., Smith, D.E., Torrence, M.H., Lemoine, F.G., and Rozhdestvenskiy into the ME system. The LOLA-derived crossover-corrected ephemeris (Mazarico and others, Zuber, M.T., 2012, Orbit determination of the Lunar Reconnaissance Orbiter: Journal of Le Gentil 2012) and an updated camera pointing provide an average accuracy of ~1 km in the horizontal Geodesy, v. 86, no. 3, p. 193–207. position (Scholten and others, 2012). Neumann, G.A., 2011, Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter reduced data Shoemaker Longitude increases to the east and latitude is planetocentric, as allowed in accordance with record and derived products software interface specification, version 2.42, LRO-L-LOLA-4- Hermite Bel'kovich Hausen 270°E 90°E current NASA and U.S. Geological Survey standards (Archinal and others, 2011). The intersec- GDR-V1.0, NASA Planetary Data System (PDS), at 270°E 90°E tion of the lunar equator and prime meridian occurs at what can be called the Moon’s “mean http://imbrium.mit.edu/DOCUMENT/RDRSIS.PDF sub-Earth point.” The concept of a lunar “sub-Earth point” derives from the fact that the Moon’s Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, rotation is tidally locked to the Earth. The actual sub-Earth point on the Moon varies slightly due B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaff- Catena Sylvester Hayn to orbital eccentricity, inclination, and other factors. So a “mean sub-Earth point” is used to ner, J.A., Malin, M.C., Mahanti, P., , A., , J., Tran, T.N., Eliason, E.M., define the point on the lunar surface where longitude equals 0°. This point does not coincide with McEwen, A.S., Turtle, E., Jolliff, B.L., and Hiesinger, H., 2010, Lunar Reconnaissance Xenophanes any prominent crater or other lunar surface feature (Lunar Reconnaissance Orbiter Project Lunar MARE Orbiter Camera (LROC) instrument overview: Space Science Reviews, v. 150, no. 1-4, p. Sikorsky Geodesy and Cartography Working Group, 2008; Archinal and others, 2011). HUMBOLDTIANUM 81–124, doi:10.1007/s11214-010-9634-2. Schrödinger MAPPING TECHNIQUES Robinson, M.S., Speyerer, E.J., Boyd, A., Waller, D., Wagner, R., and Burns, K., 2012, Exploring Vallis the Moon with the Lunar Reconnaissance Orbiter Camera: International Archives of the The WAC global mosaic shown here is a monochrome product with a normalized reflec- Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XXXIX-B4, XXII Petzval tance at 643 nm wavelength, and consists of more than 15,000 images acquired between Novem- International Society for Photogrammetry and Remote Sensing Congress, Melbourne, 8080°° ber 2009 and February 2011 (Sato and others, 2014) using revised camera pointing (Wagner and –80° Schrödinger Australia. others, 2015). The solar incidence angle at the Equator changes ~28° from the beginning to the Sato, H., Robinson, M.S., Hapke, B., Denevi, B.W., and Boyd, A.K., 2014, Resolved Hapke end of each month. To reduce these incidence angle variations, data for the equatorial mosaic were collected over three periods (January 20, 2010 to January 28, 2010, May 30, 2010 to June 6, parameter maps of the Moon: Journal of Geophysical Research, Planets, v. 119, p. 1775- 2010, and July 24, 2010 to July 31, 2010). The South Pole mosaic images were acquired from 1805, doi: 10.1002/2013JE004580. Lippmann August 10, 2010 to September 19, 2010, and the North Pole images were acquired from April 22, Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E.J., and Robinson, Vallis Planck M e t o n 2010 to May 19, 2010. Remaining gaps were filled with images acquired at other times with M.S., 2012, GLD100 - The near-global lunar 100 m raster DTM from LROC WAC stereo similar lighting conditions (Robinson and others, 2012). There is a brightness difference where image data: Journal of Geophysical Research, v. 117, no. E12, doi:10.1029/2011JE003926. Goldschmidt the polar mosaics meet the equatorial mosaics because the polar images were acquired in a 300°E Smith, D.E., Zuber, M.T., Neumann, G.A., Mazarico, E., Head, J.W., III, Torrence, M.H., and the 240°E different season than the equatorial images, and the lunar photometric function is not perfectly LOLA Science Team, 2011, Results from the Lunar Orbiter Laser Altimeter (LOLA)—global, 60°E known (Sato and others, 2014). 120°E high-resolution topographic mapping of the Moon [abs.]: Lunar Planetary Science Conference 7070°° The equatorial WAC images were orthorectified onto the Global Lunar Digital Terrain XLII, Woodlands, Tex., Abstract 2350. –70° South J. Herschel Mosaic (GLD100, WAC-derived 100 m/pixel digital elevation model; Scholten and others, 2012) Speyerer, E.J., Robinson, M.S., Denevi, B.W., and the LROC Science Team, 2011, Lunar Recon- while the polar images were orthorectified onto the lunar LOLA polar digital elevation models naissance Orbiter Camera global morphological map of the Moon [abs.]: Lunar Planetary (Neumann and others, 2010). Science Conference XLII, Woodlands, Tex., Abstract 2387. P l a n c k Minnaert To create the final base image, the original WAC mosaic that was produced by the Lunar Tooley, C.R., Houghton, M.B., Saylor, R.S., Peddie, C., Everett, D.F., Baker, C.L., and Safdie, Reconnaissance Orbiter Camera team in a Simple Cylindrical projection with a resolution of Prandtl W. Bond K.N., 2010, Lunar Reconnaissance Orbiter mission and spacecraft design: Space Science 100m/pixel was projected into the Mercator and Polar Stereographic pieces. The images were Lemaître Gärtner Reviews, v. 150, no. 1, p. 23–62, doi:10.1007/s11214-009-9624-4. then scaled to 1: 10,000,000 for the Mercator part and 1:6,078,683 for the two Polar Stereo- graphic parts with a resolution of 300 pixels per inch. The two projections have a common scale Wagner, R.V., Speyerer, E.J., Robinson, M.S., and the LROC Science Team, 2015, New mosaicked at ±56° latitude. data products from the LROC Team [abs.]: Lunar Planetary Science Conference XLVI, Woodlands, Tex., Abstract 1473. Minkowski NOMENCLATURE Williams, J.G., Boggs, D.H., and Folkner, W.M., 2008, DE421 Lunar orbit, physical , and surface coordinates: Jet Propulsion Laboratory Interoffice Memorandum IOM 6060°° Feature names on this sheet are approved by the IAU. All features greater than 85 km in –60° 330°E 335-JW,DB,WF-20080314-001, at 210°E diameter or length were included unless they were not visible on the map due to the small scale P o i n c a r é 30°E ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf. 150°E

5555°° –55° 0° 180°

SCALE 1:6 078 683 (1 mm = 6.078683 km) AT 90° LATITUDE SCALE 1:6 078 683 (1 mm = 6.078683 km) AT -90° LATITUDE POLAR STEREOGRAPHIC PROJECTION POLAR STEREOGRAPHIC PROJECTION 1000 500 0 500 1000 KILOMETERS 1000 500 0 500 1000 KILOMETERS 90° 90° –90° –90° 70° 70° –70° –70° 55° 55° –55° –55° NORTH POLAR REGION SOUTH POLAR REGION North 180° 210°E 240°E 270°E 300°E 330°E 0° 30°E 60°E 90°E 120°E 150°E 180° 57° 57° Rowland MARE HUMBOLDTIANUM Compton MARE FRIGORIS Volta Rimae Plato von d'Alembert Plato Repsold Békésy

50° MONTES ALPES 50° Montes Jura Teneriffe arp h LACUS TEMPORIS d r S Montes a r s Schlesinger e Recti e t a Millikan Stefan G n

m Mons LACUS

o

e i Ca m p b e l l

a

R Pico M

SINUS m

Wegener

Ri Gerard O IRIDUM MORTIS LACUS C SPEI Fo wler L a n d a u E H. G. A Mons Mons Rümker Piton Wells N Luna 17 CAUCASUS Catena Sumner U (Nov. 17, 1970) Messala Riemann MARE H a r k h e b i Ca S LACUS SOMNIORUM ten Kurchatov a Ku rc Dorsum Scilla h a Gauss to Nernst v Montes d Spitzbergen n o

Dorsum Heim B Vestine Szilard

Röntgen MONTES . L o r e n t z IMBRIUM SINUS G Shayn Larmor Dorsum Zirkel Posidonius a Richardson

LUNICUS im R Hahn MARE Larmor 30° Maxwell 30° v Rayleigh Dorsum o Seyfert

n

Azara r

Laue PALUS i MONTES Luna 21 MARE ANGUIS ArtamonovCatena Montes Agricola PUTREDINIS m

Joule S Russell Schr Montes Jan. 15, 1973) TAURUS MARE ö a is t Dorsa ll e Montes (July 30, 1971) s Joliot Lomonosov a r r Burnet i V o Harbinger MOSCOVIENSE Parenago SE RE NITATIS D

Struve S D U M o Vernadskiy N r LACUS I O s Dorsa Herodotus N u r Tetyaev N N m e el Moseley Luna 13 T t SINUS p E E B s BONITATIS p P S u i O (Dec. 24, 1966) A ck L la m nd a rs u S H D o s E A AMORIS r MARE Mach T E Dec. 11, 1972) o Mitra P N M Poynting O U D R M LACUS S Kekulé Weyl E i n s t e i n MONTES CARPATUS McMath O DOLORIS Goddard Proclus CRISIUM Dorsa Anderson Vasco C MARE PALUS Barlow Dorsa MARE da Gama SOMNI E SINUS VAPORUM Harker L SINUS R Luna 24 MARGINIS Rima AESTUUM im SINUS Guyot L MARE (Aug. 18, 1976) Spencer Jones HONORIS a CONCORDIAE A C Ostwald Copernicus au

Vallis C Luna 9 c atena R MARE Rima hy Neper Papaleksi Feb. 3, 1966) Hyginus Rima U Vetchinkin MARE Lobachevskiy Leuschner (GDL) M TRANQUILLITATIS Ibn Firnas Catena Reiner UNDARUM Luna 20 Catena Mandel'shtam Tsander Gamma Banachiewicz (Feb. 21, 1972) Michelson I N S U L A R U M Michelson (GIRD) Surveyor 5 Mendeleev Hedin Surveyor 6 (Sep. 11, 1967) Kibal'chich Hevelius SINUS SINUS MARE Hertzsprung (Nov. 10, 1967) Catena MEDII Rimae Hypatia(July 20, 1969) SUCCESSUS SPUMANS MARE Gregory 0° 0° East

West Vening Meinesz Surveyor 1 MARE Luna 16 Wyld Saha (Ju ne 2, 1966) SINUS e Lipskiy Vavilov i (Sep. 20, 1970) Catena Lucretius (RNII) (Feb. 5, 1971) k SMYTHII Riccioli (Nov. 19, 1969) i Gilbert e G K o r o l e v S C O R Ventris E D a Icarus T I Grimaldi Surveyor 3 Hipparchus s L Schlüter Vallis r Hirayama N L o E (April 20, 1967) Kästner Love O R D Daedalus M A (April 21, 1972) ASPERITATIS Dorsa Dorsa Ewing E S R O MARE Mons Mawson Langrenus N T O Ptolemaeus Keeler O K Penck Langemak M AUTUMNILACUS Montes Riphaeus FECUNDITATIS Perepelkin COGNITUM Pasteur Meitner Letronne LACUS VERIS Paschen G a l o i s MARE Catena Kondratyuk NECTARIS Montes Gassendi Pyrenaeus Isaev Rimae Sirsalis Sklodowska MARE Rupes Recta Sternfeld MARE F e r m i G a g a r i n Tsiolkovskiy ORIENTALE R u Hecataeus p V MARE s e Catena Paracelsus a Lamarck u s

Gerasimovich l l Humboldt l

a NUBIUM i s Levi-Civita p

p Rimae P i Purbach a HUMORUM H Sacrobosco Petavius Liebig l

A i e l Petavius t Phillips LACUS t z Humboldt Rupes a a

i s M c SOLITUDINIS im Rupes Mercator O R Regiomontanus h Pavlov N K Leeuwenhoek T O Vieta Pitatus Piccolomini Snellius –30° E O –30° S R M i l n e Rima Hesiodus MARE A PALUS R EPIDEMIARUM Thomson E Lagrange Walther L Parkhurst M L O D I Gemma Frisius Jules N C O R LACUS Wurzelbauer Verne INGENII T E S V Eötvös a Piazzi EXCELLENTIAE l l A p o l l o i s LACUS TIMORIS MARE B Leibnitz o Surveyor 7 Leibnitz u Vallis Lundmark v (Jan. 10, 1968) a r d Orontius Stöfler Maurolycus Roche Vallis Inghirami Lamb Koch Wilhelm Vallis Tycho Van der Mee AUSTRALE Waals Ryder Pauli Lagalla Rimae Rheita Von Kármán Chrétien Janssen Inghirami Lebedev Heraclitus Mendel Longomontanus –50° –50°

Schiller Maginus Lyot Hopmann

Vallis Planck Phocylides Vlacq Hess Lippmann H o m m e l Minkowski P o i n c a r é Rosenberger P l a n c k –57° –57° 180° 210°E 240°E 270°E 300°E 330°E 0° 30°E 60°E 90°E 120°E 150°E 180° (150°W) (120°W) (90°W) (60°W) (30°W) South

Descriptions of nomenclature used on map are listed at SCALE 1:10 000 000 (1 mm = 10 km) AT 0˚ LATITUDE Prepared on behalf of the Planetary Geology and Geophysics Program, http://planetarynames.wr.usgs.gov/ MERCATOR PROJECTION Solar System Exploration Division, Office of Space Science, National Aeronautics and Space Administration 2000 1000 500 0 500 1000 2000 KILOMETERS Edited by Kate Jacques; digital cartography by Vivian Nguyen Manuscript approved for publication October 28, 2014 57° 57°

40° 40° 20° 20° 0° 0°

Image Map of the Moon

Any use of trade, product, or firm names in this publication is for descriptive purposes only By and does not imply endorsement by the U.S. Government Printed on recycled paper 1 1 1 1 2 For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Trent M. Hare, Rosalyn K. Hayward, Jennifer S. Blue, Brent A. Archinal, Mark S. Robinson, Emerson J. Denver, CO 80225, 1–888–ASK–USGS Digital files available at http://pubs.usgs.gov/sim/3316/ 1U.S. Geological Survey; 2 2 3 3 4 4 Suggested citation: Hare, T.M., Hayward, R.K., Blue, J.S., Archinal, B.A., Robinson, M.S., Speyerer, 2 Robert V. Wagner, David E. Smith, Maria T. Zuber, Gregory A. Neumann, and Erwan Mazarico Arizona State University; Speyerer, E.J., Wagner, R.V., Smith, D.E., Zuber, M.T., Neumann, G.A., and Mazarico, E., 3 ISSN 2329-1311 (print) Massachusetts Institute of Technology; ISSN 2329-132X (online) 2015, Image mosaic and topographic map of the moon: U.S. Geological Survey Scientific 4 2015 NASA Goddard Space Flight Center http://dx.doi.org/10.3133/sim3316 Investigations Map 3316, 2 sheets, http://dx.doi.org/10.3133/sim3316.