University of Cincinnati
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fstate Scientist: Omond Mckillop Solandt and Government Science
fState Scientist: Omond McKillop Solandt and Government Science in War and Hostile Peace, 1939-1956/ Scientifique.de l'Etat: Omond McKillop Solandt et la Science du Gouvernement lors de la Guerre et de la Paix Hostile, 1939-1956 A Thesis Submitted to the Division of Graduate Studies of the Royal Military College of Canada by Jason Sean Ridler, MA Royal Military College of Canada, 2001 BA (Hons.) York University, 1999 In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2008 ©This thesis may be used within the Department of National Defence but copyright for open publication remains the property of the author. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47901-8 Our file Notre reference ISBN: 978-0-494-47901-8 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Human Spatial Orientation Perceptions During Simulated Lunar Landing
Human Spatial Orientation Perceptions during Simulated Lunar Landing By Torin Kristofer Clark B.S. Aerospace Engineering University of Colorado at Boulder, 2008 SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2010 © 2010 Massachusetts Institute of Technology All rights reserved Signature of Author: ____________________________________________________________ Torin K. Clark Department of Aeronautics and Astronautics May 21, 2010 Certified by: ___________________________________________________________________ Laurence R. Young Apollo Program Professor of Astronautics Professor of Health Sciences and Technology Thesis Supervisor Certified by: ___________________________________________________________________ Kevin R. Duda Senior Member, Technical Staff, Draper Laboratory Thesis Supervisor Accepted by: __________________________________________________________________ Eytan H. Modiano Associate Professor of Aeronautics and Astronautics Chair, Committee on Graduate Students 1 ABSTRACT During crewed lunar landings, astronauts are expected to guide a stable and controlled descent to a landing zone that is level and free of hazards by either making landing point (LP) redesignations or taking direct manual control. However, vestibular and visual sensorimotor limitations unique to lunar landing may interfere with landing performance and safety. Vehicle motion profiles of candidate -
Topographic Power Spectra of Cratered Terrains: 10.1002/2014JE004746 Theory and Application to the Moon
JournalofGeophysicalResearch: Planets RESEARCH ARTICLE Topographic power spectra of cratered terrains: 10.1002/2014JE004746 Theory and application to the Moon Key Points: Margaret A. Rosenburg1, Oded Aharonson2, and Re’em Sari3 • Impact cratering produces characteristic variations in the 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Department topographic PSD of Earth and Planetary Sciences, Weizmann Institute of Technology, Rehovot, Israel, 3Racah Institute of Physics, Hebrew • The size-frequency distribution and shape of craters control University of Jerusalem, Jerusalem, Israel PSD variations • We investigate the topographic PSD on model terrains and Impact cratering produces characteristic variations in the topographic power spectral density lunar topography Abstract (PSD) of cratered terrains, which are controlled by the size-frequency distribution of craters and the spectral content (shape) of individual features. These variations are investigated here in two parallel Correspondence to: approaches. First, a cratered terrain model, based on Monte Carlo emplacement of craters and benchmarked M. A. Rosenburg, [email protected] by an analytical formulation of the one-dimensional PSD, is employed to generate topographic surfaces at a range of size-frequency power law exponents and shape dependencies. For self-similar craters, the slope of the PSD, , varies inversely with that of the production function, , leveling off to 0 at high (surface Citation: Rosenburg, M. A., O. Aharonson, topography dominated by the smallest craters) and maintaining a roughly constant value ( ∼ 2) at low and R. Sari (2015), Topographic (surface topography dominated by the largest craters). The effects of size-dependent shape parameters power spectra of cratered terrains: and various crater emplacement rules are also considered. -
Annual Report 2013.Pdf
ATOMIC HERITAGE FOUNDATION Preserving & Interpreting Manhattan Project History & Legacy preserving history ANNUAL REPORT 2013 WHY WE SHOULD PRESERVE THE MANHATTAN PROJECT “The factories and bombs that Manhattan Project scientists, engineers, and workers built were physical objects that depended for their operation on physics, chemistry, metallurgy, and other nat- ural sciences, but their social reality - their meaning, if you will - was human, social, political....We preserve what we value of the physical past because it specifically embodies our social past....When we lose parts of our physical past, we lose parts of our common social past as well.” “The new knowledge of nuclear energy has undoubtedly limited national sovereignty and scaled down the destructiveness of war. If that’s not a good enough reason to work for and contribute to the Manhattan Project’s historic preservation, what would be? It’s certainly good enough for me.” ~Richard Rhodes, “Why We Should Preserve the Manhattan Project,” Bulletin of the Atomic Scientists, May/June 2006 Photographs clockwise from top: J. Robert Oppenheimer, General Leslie R. Groves pinning an award on Enrico Fermi, Leona Woods Marshall, the Alpha Racetrack at the Y-12 Plant, and the Bethe House on Bathtub Row. Front cover: A Bruggeman Ranch property. Back cover: Bronze statues by Susanne Vertel of J. Robert Oppenheimer and General Leslie Groves at Los Alamos. Table of Contents BOARD MEMBERS & ADVISORY COMMITTEE........3 Cindy Kelly, Dorothy and Clay Per- Letter from the President..........................................4 -
On R.E Size Effect Measurements Fermi
V "" ON R.E SIZE EFFECT MEASUREMENTS FERMI SURFACE IN INDIUM D.G.deGROOT V-' VRIJE UNIVERSITEIT TE AMSTERDAM ON R.F. SIZE EFFECT MEASUREMENTS AND THE FERMI SURFACE IN INDIUM ACADEMISCH PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE VRIJE UNIVERSITEIT TE AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS MR.I.A.DIEPENHORST, HOOGLERAAR IN DE FACULTEIT DER RECHTSGELEERDHEID, IN HET OPENBAAR TE VERDEDIGEN OP DONDERDAG 2 MEI 1974 TE 13.30 UUR IN HET HOOFDGEBOUW DER UNIVERSITEIT, DE BOELELAAN 1105 DOOR DIRK GEERT DE GROOT. GEBOREN TE EINDHOVEN *hk r r PROMOTOR: DR. A. LODDER COREFERENT: DR. J.H.P. VAN WEEREN This investigation was part of the research program of the "Stichting voor Fundamenteel Onderzoek der Materie (F.O.M.)", which is financially supported by the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (Z.W.O.)". STELLINGEN 1. Het is gewenst in de berekening van de laag freguente ruis in de verzadigingsstroom in avalanche diodes naast de schrootruis in de injectiestroom andere ruiscomponenten te betrekken. 2. Bij het onderzoek van anomalieen in de transmissie van electromagnetische golven door metaalkristallen vormt de ondergrond in de transmissie in vele gevallen een niet te scheiden component van het signaal. 3. De benaming O.P.W. berekening voor een pseudopotentiaal interpolatie schema, waarbij de Fouriercomponenten van de pseudopotentiaal als aan te passsen parameters worden ge- hanteerd, wekt ten onrechte de indruk dat de gebruikte golffuncties orthogonaal staan op de atomaire pit golf- functies. 4. Het is gewenst dat de Nederlandse regering een prejudiciele beschikking uitlokt, die tot gevolg zal hebben dat dienst- merken onder de beschermende werking van de Eenvormige Beneluxwet op de Warenmerken worden gebracht. -
Viscosity from Newton to Modern Non-Equilibrium Statistical Mechanics
Viscosity from Newton to Modern Non-equilibrium Statistical Mechanics S´ebastien Viscardy Belgian Institute for Space Aeronomy, 3, Avenue Circulaire, B-1180 Brussels, Belgium Abstract In the second half of the 19th century, the kinetic theory of gases has probably raised one of the most impassioned de- bates in the history of science. The so-called reversibility paradox around which intense polemics occurred reveals the apparent incompatibility between the microscopic and macroscopic levels. While classical mechanics describes the motionof bodies such as atoms and moleculesby means of time reversible equations, thermodynamics emphasizes the irreversible character of macroscopic phenomena such as viscosity. Aiming at reconciling both levels of description, Boltzmann proposed a probabilistic explanation. Nevertheless, such an interpretation has not totally convinced gen- erations of physicists, so that this question has constantly animated the scientific community since his seminal work. In this context, an important breakthrough in dynamical systems theory has shown that the hypothesis of microscopic chaos played a key role and provided a dynamical interpretation of the emergence of irreversibility. Using viscosity as a leading concept, we sketch the historical development of the concepts related to this fundamental issue up to recent advances. Following the analysis of the Liouville equation introducing the concept of Pollicott-Ruelle resonances, two successful approaches — the escape-rate formalism and the hydrodynamic-mode method — establish remarkable relationships between transport processes and chaotic properties of the underlying Hamiltonian dynamics. Keywords: statistical mechanics, viscosity, reversibility paradox, chaos, dynamical systems theory Contents 1 Introduction 2 2 Irreversibility 3 2.1 Mechanics. Energyconservationand reversibility . ........................ 3 2.2 Thermodynamics. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
Cosmological Narrative in the Synagogues of Late Roman-Byzantine Palestine
COSMOLOGICAL NARRATIVE IN THE SYNAGOGUES OF LATE ROMAN-BYZANTINE PALESTINE Bradley Charles Erickson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Religious Studies. Chapel Hill 2020 Approved by: Jodi Magness Zlatko Plese David Lambert Jennifer Gates-Foster Maurizio Forte © 2020 Bradley Charles Erickson ALL RIGHTS RESERVED ii ABSTRACT Bradley Charles Erickson: Cosmological Narrative in the Synagogues of Late Roman-Byzantine Palestine (Under the Direction of Jodi Magness) The night sky provided ancient peoples with a visible framework through which they could view and experience the divine. Ancient astronomers looked to the night sky for practical reasons, such as the construction of calendars by which time could evenly be divided, and for prognosis, such as the foretelling of future events based on the movements of the planets and stars. While scholars have written much about the Greco-Roman understanding of the night sky, few studies exist that examine Jewish cosmological thought in relation to the appearance of the Late Roman-Byzantine synagogue Helios-zodiac cycle. This dissertation surveys the ways that ancient Jews experienced the night sky, including literature of the Second Temple (sixth century BCE – 70 CE), rabbinic and mystical writings, and Helios-zodiac cycles in synagogues of ancient Palestine. I argue that Judaism joined an evolving Greco-Roman cosmology with ancient Jewish traditions as a means of producing knowledge of the earthly and heavenly realms. iii ACKNOWLEDGEMENTS I wish to express my sincere appreciation to my adviser, Dr. -
Literature of the Low Countries
Literature of the Low Countries A Short History of Dutch Literature in the Netherlands and Belgium Reinder P. Meijer bron Reinder P. Meijer, Literature of the Low Countries. A short history of Dutch literature in the Netherlands and Belgium. Martinus Nijhoff, The Hague / Boston 1978 Zie voor verantwoording: http://www.dbnl.org/tekst/meij019lite01_01/colofon.htm © 2006 dbnl / erven Reinder P. Meijer ii For Edith Reinder P. Meijer, Literature of the Low Countries vii Preface In any definition of terms, Dutch literature must be taken to mean all literature written in Dutch, thus excluding literature in Frisian, even though Friesland is part of the Kingdom of the Netherlands, in the same way as literature in Welsh would be excluded from a history of English literature. Similarly, literature in Afrikaans (South African Dutch) falls outside the scope of this book, as Afrikaans from the moment of its birth out of seventeenth-century Dutch grew up independently and must be regarded as a language in its own right. Dutch literature, then, is the literature written in Dutch as spoken in the Kingdom of the Netherlands and the so-called Flemish part of the Kingdom of Belgium, that is the area north of the linguistic frontier which runs east-west through Belgium passing slightly south of Brussels. For the modern period this definition is clear anough, but for former times it needs some explanation. What do we mean, for example, when we use the term ‘Dutch’ for the medieval period? In the Middle Ages there was no standard Dutch language, and when the term ‘Dutch’ is used in a medieval context it is a kind of collective word indicating a number of different but closely related Frankish dialects. -
Einstein, History, and Other Passions : the Rebellion Against Science at the End of the Twentieth Century
Einstein, history, and other passions : the rebellion against science at the end of the twentieth century The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Holton, Gerald James. 2000. Einstein, history, and other passions : the rebellion against science at the end of the twentieth century. Cambridge, MA: Harvard University Press. Published Version http://www.hup.harvard.edu/catalog.php?isbn=9780674004337 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23975375 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA EINSTEIN, HISTORY, ANDOTHER PASSIONS ;/S*6 ? ? / ? L EINSTEIN, HISTORY, ANDOTHER PASSIONS E?3^ 0/" Cf72fM?y GERALD HOLTON A HARVARD UNIVERSITY PRESS C%772^r?<%gf, AizziMc^zzyeZZy LozzJozz, E?zg/%??J Q AOOO Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in capital letters. PHYSICS RESEARCH LIBRARY NOV 0 4 1008 Copyright @ 1996 by Gerald Holton All rights reserved HARVARD UNIVERSITY Printed in the United States of America An earlier version of this book was published by the American Institute of Physics Press in 1995. First Harvard University Press paperback edition, 2000 o/ CoMgre.w C%t%/og;Hg-zM-PMMt'%tz'c7t Dzztzz Holton, Gerald James.