Final Corals Supplemental Information Report

Total Page:16

File Type:pdf, Size:1020Kb

Final Corals Supplemental Information Report Supplemental Information Report on Status Review Report And Draft Management Report For 82 Coral Candidate Species November 2012 Southeast and Pacific Islands Regional Offices National Marine Fisheries Service National Oceanic and Atmospheric Administration Department of Commerce Table of Contents INTRODUCTION ............................................................................................................................................. 1 Background ............................................................................................................................................... 1 Methods .................................................................................................................................................... 1 Purpose ..................................................................................................................................................... 2 MISCELLANEOUS COMMENTS RECEIVED ...................................................................................................... 3 SRR EXECUTIVE SUMMARY ........................................................................................................................... 4 1. Introduction ........................................................................................................................................... 4 2. General Background on Corals and Coral Reefs .................................................................................... 4 2.1 Taxonomy & Distribution .............................................................................................................. 5 2.1.1 Taxonomy and morphology of scleractinian corals .............................................................. 5 2.1.2 Species delineation and uncertainty in corals ...................................................................... 5 2.1.3 Evolutionary history of coral reefs ........................................................................................ 5 2.2 Biology ........................................................................................................................................... 6 2.2.1 Reproduction and Recruitment ............................................................................................ 6 2.2.2 Nutrition ................................................................................................................................ 6 2.2.3 Calcification & Reef‐building ................................................................................................. 6 2.2.4 Clonality & Genetics .............................................................................................................. 6 2.3 Ecology of Coral Reef Ecosystems ................................................................................................. 6 2.3.1 Ecosystem roles of coral reefs .............................................................................................. 6 2.3.2 Habitat requirements of corals and reefs ............................................................................. 7 2.3.3 Global habitat condition ....................................................................................................... 7 2.3.4 Phase shifts ........................................................................................................................... 7 2.3.5 Resilience of corals and coral reefs ....................................................................................... 8 2.4 Status & Recent Ecological History of Caribbean Reefs ................................................................ 8 2.5 Contrast between Caribbean & Indo‐Pacific [Also relevant to Draft Mgt Report/DMR: 1.1 CURRENT RANGES].................................................................................................................................... 8 2.6 Status and Recent Ecological History of Eastern Pacific Reefs ..................................................... 9 3 Threats to Coral Species [Also relevant to Draft Mgt Report/DMR: 1.2.1] ........................................... 9 3.1 Human Population ...................................................................................................................... 10 3.1.1 Human Population .............................................................................................................. 10 3.1.2 Consumption status and trends .......................................................................................... 10 ii 3.2 Global Climate Change and Large‐Scale Threats [Also relevant to Draft Mgt Report/DMR: 1.2.1.1] .................................................................................................................................................... 10 3.2.1 Atmospheric CO2 and emissions trends .............................................................................. 12 3.2.2 Ocean Warming .................................................................................................................. 13 3.2.3 Ocean Acidification ............................................................................................................. 23 3.2.4 Sea‐level rise (slow and/or rapid) ....................................................................................... 28 3.2.5 Changing ocean circulation ................................................................................................. 31 3.2.6 Changing Storm Tracks and intensities ............................................................................... 31 3.2.7 African & Asian Dust ........................................................................................................... 31 3.2.8 Changes in Insolation .......................................................................................................... 31 3.2.9 Summary of Global Changes and their impacts .................................................................. 32 3.3 Local Threats [Also relevant for Draft Mgt Report/DMR: 1.2.1.2] .............................................. 32 3.3.1 Land‐based Sources of Pollution ......................................................................................... 33 3.3.2 Disease ................................................................................................................................ 35 3.3.3 Predation ............................................................................................................................. 39 3.3.4 Reef fishing – trophic cascades ........................................................................................... 41 3.3.5 Direct habitat impacts and destructive fishing practices .................................................... 42 3.3.6 Ornamental Trade ............................................................................................................... 42 3.3.7 Natural physical damage ..................................................................................................... 43 3.3.8 Human induced physical damage ....................................................................................... 43 3.3.9 Aquatic invasive species ...................................................................................................... 43 3.3.10 Summary of local changes and their impacts ..................................................................... 44 3.4 Interactive and Unapparent Threats to Coral Populations ......................................................... 44 3.5 Summary of Threats .................................................................................................................... 44 4 Demographic & Spatial Factors in Evaluation of Risk ......................................................................... 44 4.1 Overview ..................................................................................................................................... 44 4.2 Abundance & Productivity of Corals ........................................................................................... 45 4.3 Spatial Structure of Corals .......................................................................................................... 45 4.4 Diversity in Corals ........................................................................................................................ 46 4.5 Critical Risk Threshold ................................................................................................................. 47 4.5.1 Critical Risk Threshold and depensatory processes ............................................................ 47 4.5.2 Critical Risk Threshold and sexual reproduction ................................................................. 47 iii 5 Methods .............................................................................................................................................. 47 5.1 Overview ..................................................................................................................................... 48 5.2 The Species Question .................................................................................................................. 48 5.3 Data Review ................................................................................................................................ 48 5.4 Defining Extinction Risk ............................................................................................................... 48 5.5 Assessing the Critical Risk Threshold
Recommended publications
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • Exposure to Elevated Sea-Surface Temperatures Below the Bleaching Threshold Impairs Coral Recovery and Regeneration Following Injury
    A peer-reviewed version of this preprint was published in PeerJ on 18 August 2017. View the peer-reviewed version (peerj.com/articles/3719), which is the preferred citable publication unless you specifically need to cite this preprint. Bonesso JL, Leggat W, Ainsworth TD. 2017. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5:e3719 https://doi.org/10.7717/peerj.3719 Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury Joshua Louis Bonesso Corresp., 1 , William Leggat 1, 2 , Tracy Danielle Ainsworth 2 1 College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia 2 Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia Corresponding Author: Joshua Louis Bonesso Email address: [email protected] Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals’ upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals’ nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e.
    [Show full text]
  • Intra-Colonial Diversity in the Scleractinian Coral
    Intra-colonial diversity in the scleractinian coral, Acropora millepora: identifying the nutritional gradients underlying physiological integration and compartmentalised functioning Jessica A. Conlan1, Craig A. Humphrey2, Andrea Severati2 and David S. Francis1 1 School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia 2 The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia ABSTRACT Scleractinian corals are colonial organisms comprising multiple physiologically integrated polyps and branches. Colonialism in corals is highly beneficial, and allows a single colony to undergo several life processes at once through physiological integra- tion and compartmentalised functioning. Elucidating differences in the biochemical composition of intra-colonial branch positions will provide valuable insight into the nutritional reserves underlying different regions in individual coral colonies. This will also ascertain prudent harvesting strategies of wild donor-colonies to generate coral stock with high survival and vigour prospects for reef-rehabilitation efforts and captive husbandry. This study examined the effects of colony branch position on the nutritional profile of two different colony sizes of the common scleractinian, Acropora millepora. For smaller colonies, branches were sampled at three locations: the colony centre (S-centre), 50% of the longitudinal radius length (LRL) (S-50), and the colony edge (S-edge). For larger colonies, four locations were sampled: the colony centre (L-centre), 33.3% of the LRL (L-33), 66.6% of the LRL (L-66), and the edge (L-edge). Results Submitted 21 September 2017 demonstrate significant branch position effects, with the edge regions containing higher Accepted 16 December 2017 protein, likely due to increased tissue synthesis and calcification.
    [Show full text]
  • The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
    ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Pax Gene Diversity in the Basal Cnidarian Acropora Millepora (Cnidaria, Anthozoa): Implications for the Evolution of the Pax Gene Family
    Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): Implications for the evolution of the Pax gene family David J. Miller*†, David C. Hayward‡, John S. Reece-Hoyes*‡, Ingo Scholten*, Julian Catmull*‡, Walter J. Gehring§, Patrick Callaerts§¶, Jill E. Larsen*, and Eldon E. Ball‡ *Department of Biochemistry and Molecular Biology, James Cook University, Townsville, Queensland 4811, Australia; ‡Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra ACT 2601, Australia; §Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland; and ¶Department of Biology, University of Houston, Houston, TX 77204-5513 Contributed by Walter J. Gehring, January 31, 2000 Pax genes encode a family of transcription factors, many of which Many Pax proteins contain motifs in addition to the PD; most play key roles in animal embryonic development but whose evo- of the arthropod and chordate Pax genes fall into four classes on lutionary relationships and ancestral functions are unclear. To the basis of comparisons of domain structure and sequences address these issues, we are characterizing the Pax gene comple- (9–12). The Pax-6 class, which includes Drosophila eyeless, is the ment of the coral Acropora millepora, an anthozoan cnidarian. As only unequivocal case of conservation of function (reviewed in the simplest animals at the tissue level of organization, cnidarians ref. 13). The Pax-2͞5͞8 class is viewed as that most closely occupy a key position in animal evolution, and the Anthozoa are related to the Pax-6 group—the ‘‘supergroup’’ comprising Pax- the basal class within this diverse phylum. We have identified four 6͞2͞5͞8 is clearly distinct from the other supergroup, which Pax genes in Acropora: two (Pax-Aam and Pax-Bam) are orthologs comprises the Pax-3͞7 and Pax-1͞9 clades (11).
    [Show full text]
  • Composition and Ecology of Deep-Water Coral Associations D
    HELGOLK---~DER MEERESUNTERSUCHUNGEN Helgoltinder Meeresunters. 36, 183-204 (1983) Composition and ecology of deep-water coral associations D. H. H. Kfihlmann Museum ffir Naturkunde, Humboldt-Universit~t Berlin; Invalidenstr. 43, DDR- 1040 Berlin, German Democratic Republic ABSTRACT: Between 1966 and 1978 SCUBA investigations were carried out in French Polynesia, the Red Sea, and the Caribbean, at depths down to 70 m. Although there are fewer coral species in the Caribbean, the abundance of Scleractinia in deep-water associations below 20 m almost equals that in the Indian and Pacific Oceans. The assemblages of corals living there are described and defined as deep-water coral associations. They are characterized by large, flattened growth forms. Only 6 to 7 % of the species occur exclusively below 20 m. More than 90 % of the corals recorded in deep waters also live in shallow regions. Depth-related illumination is not responsible for depth differentiations of coral associations, but very likely, a complex of mechanical factors, such as hydrodynamic conditions, substrate conditions, sedimentation etc. However, light intensity deter- mines the general distribution of hermatypic Scleractinia in their bathymetric range as well as the platelike shape of coral colonies characteristic for deep water associations. Depending on mechani- cal factors, Leptoseris, Montipora, Porites and Pachyseris dominate as characteristic genera in the Central Pacific Ocean, Podabacia, Leptoseris, Pachyseris and Coscinarea in the Red Sea, Agaricia and Leptoseris in the tropical western Atlantic Ocean. INTRODUCTION Considerable attention has been paid to shallow-water coral associations since the first half of this century (Duerden, 1902; Mayer, 1918; Umbgrove, 1939). Detailed investigations at depths down to 20 m became possible only through the use of autono- mous diving apparatus.
    [Show full text]
  • Scleractinian Reef Corals: Identification Notes
    SCLERACTINIAN REEF CORALS: IDENTIFICATION NOTES By JACKIE WOLSTENHOLME James Cook University AUGUST 2004 DOI: 10.13140/RG.2.2.24656.51205 http://dx.doi.org/10.13140/RG.2.2.24656.51205 Scleractinian Reef Corals: Identification Notes by Jackie Wolstenholme is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................ i INTRODUCTION .................................................................................................................................................. 1 ABBREVIATIONS AND DEFINITIONS ............................................................................................................. 2 FAMILY ACROPORIDAE.................................................................................................................................... 3 Montipora ........................................................................................................................................................... 3 Massive/thick plates/encrusting & tuberculae/papillae ................................................................................... 3 Montipora monasteriata .............................................................................................................................. 3 Massive/thick plates/encrusting & papillae ...................................................................................................
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • May 24, 2021 Mr. Michael D. Tosatto Pacific Islands Regional Office
    May 24, 2021 Mr. Michael D. Tosatto Pacific Islands Regional Office NOAA Inouye Regional Center 1845 Wasp Boulevard, Building 176 Honolulu, HI 96818 RE: Proposed Critical Habitat Designation for Seven Threatened Corals in U.S. Waters in the Indo-Pacific (NOAA-NMFS-2016-0131) Dear Mike: The Western Pacific Regional Fishery Management Council (Council) appreciates the opportunity to provide comments to the National Marine Fisheries Service (NMFS) on the proposed rule to designate critical habitat for the seven threatened corals in U.S. waters in the Indo-Pacific pursuant to section 4 of the Endangered Species Act (ESA)1. The Council appreciates NMFS for responding to the requests for holding public hearings and extending the public comment period. The Council believes that the proposed critical habitat designations in U.S. waters published by NMFS are overly broad, and not based upon the best available scientific or economic information. Furthermore, the Council concludes that existing federal and local mechanisms also provide adequate protections for corals and their habitat, and designation of critical habitat is not likely to provide additional conservation benefits. By way of background, in 2018, the Supreme Court held that critical-habitat designations are limited to areas that are “also habitat for the species.” See Weyerhauser Co. v. U.S. Fish & Wildlife Serv., 139 S. Ct. 361,368(2018) (emphasis in original). However, the Court left open the question of whether a currently-uninhabitable area would qualify as critical habitat. In 2019, NMFS promulgated revisions to the ESA implementing regulations. The new regulations included revisions to critical habitat designation.
    [Show full text]
  • Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific
    Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific Dissertation by Sofya Mudrova In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia November, 2018 2 EXAMINATION COMMITTEE PAGE The dissertation of Sofya Mudrova is approved by the examination committee. Committee Chairperson: Dr. Michael Lee Berumen Committee Co-Chair: Dr. Viatcheslav Ivanenko Committee Members: Dr. James Davis Reimer, Dr. Takashi Gojobori, Dr. Manuel Aranda Lastra 3 COPYRIGHT PAGE © November, 2018 Sofya Mudrova All rights reserved 4 ABSTRACT Molecular diversity, phylogeny and biogeographic patterns of crustacean copepods associated with scleractinian corals of the Indo-Pacific Sofya Mudrova Biodiversity of coral reefs is higher than in any other marine ecosystem, and significant research has focused on studying coral taxonomy, physiology, ecology, and coral-associated fauna. Yet little is known about symbiotic copepods, abundant and numerous microscopic crustaceans inhabiting almost every living coral colony. In this thesis, I investigate the genetic diversity of different groups of copepods associated with reef-building corals in distinct parts of the Indo-Pacific; determine species boundaries; and reveal patterns of biogeography, endemism, and host-specificity in these symbiotic systems. A non-destructive method of DNA extraction allowed me to use an integrated approach to conduct a diversity assessment of different groups of copepods and to determine species boundaries using molecular and taxonomical methods. Overall, for this thesis, I processed and analyzed 1850 copepod specimens, representing 269 MOTUs collected from 125 colonies of 43 species of scleractinian corals from 11 locations in the Indo-Pacific.
    [Show full text]
  • Proposed Listing Determinations for 82 Reef-Building Coral Species
    Billing Code 3510-22-P DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Parts 223 and 224 [Docket No. 0911231415-2625-02] 0648-XT12 Endangered and Threatened Wildlife and Plants: Proposed Listing Determinations for 82 Reef- building Coral Species; Proposed Reclassification of Acropora palmata and Acropora cervicornis from Threatened to Endangered. AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Proposed rule; request for comments. SUMMARY: We, NMFS, have completed comprehensive status reviews under the Endangered Species Act (ESA) of 82 reef-building coral species in response to a petition submitted by the Center for Biological Diversity (CBD) to list the species as either threatened or endangered. We have determined, based on the best scientific and commercial data available and efforts being made to protect the species, that 12 of the petitioned coral species warrant listing as endangered (five Caribbean and seven Indo-Pacific), 54 coral species warrant listing as threatened (two Caribbean and 52 Indo-Pacific), and 16 coral species (all Indo-Pacific) do not warrant listing as threatened or endangered under the ESA. Additionally, we have determined, based on the best scientific and commercial information available and efforts undertaken to protect the species, two Caribbean coral species currently listed warrant reclassification from threatened to 1 endangered. We are announcing that 18 public hearings will be held during the public comment period to provide additional opportunities and formats to receive public input. See SUPPLEMENTARY INFORMATION for public hearing dates, times, and locations. DATES: Comments on this proposal must be received by [INSERT DATE 90 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].
    [Show full text]