The Gotthard Base Tunnel Project in Switzerland – Construction of the World’S Longest Railway Tunnel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SWISS REVIEW the Magazine for the Swiss Abroad August 2016
SWISS REVIEW The magazine for the Swiss Abroad August 2016 History at the Gotthard – the opening of the base tunnel A cotton and plastic sandwich – the new CHF 50 banknote Keeping an eye on the surveillance – the Davos-born photographer Jules Spinatsch Switzerland is mobile and Swiss Abroad may be found everywhere on Earth. And you, where are you situated around the globe? And since when? Share your experience and get to know Swiss citizens living nearby… and everywhere else! connects Swiss people across the world > You can also take part in the discussions at SwissCommunity.org > Register now for free and connect with the world SwissCommunity.org is a network set up by the Organisation of the Swiss Abroad (OSA) SwissCommunity-Partner: Contents Editorial 3 Casting your vote – even if it is sometimes a chore 5 Mailbag Hand on heart, did you vote in June? If you did, on how many of the five federal proposals? I tried to form an 6 Focus opinion on all of the initiatives and referenda. I stu The tunnelbuilding nation died the voting documents, read newspapers, watched “Arena” on Swiss television and discussed the issues 10 Economy with family and friends. The new banknotes Admittedly, it was arduous at times: Just the doc uments themselves, which included two hefty book 12 Politics lets, various information sheets and the ballot papers, namely for the five fed Referendum results from 5 June eral proposals – pro public service, unconditional basic income, the milch Proposals for 25 September cow initiative, the amendment to the law on reproductive medicine and an Parmelin’s first few months on the amendment to the Asylum Act – plus, because I live in Baselland, six cantonal Federal Council proposals ranging from supplementary childcare to the “Cantonal parlia ment resolution on the implementation of the pension fund law reform for 17 Culture the pension scheme of the University of Basel under the pension fund of the The alphorn in the modern age canton of BaselStadt – a partnershipbased enterprise”. -
Case Study Elasticity for the Slab Track in the Gotthard Base Tunnel, (CH)
Case Study Elasticity for the Slab Track in the Gotthard Base Tunnel, (CH) The project of the century: With 57 kilometres the world's longest railway tunnel Highest requirements: Outstanding material properties over the entire service life Optimised solution, comprehensive project support and just-in-time logistics Elastic Sylodyn® Insertion Pads for Sleeper Boots in the World's longest Railway Tunnel Description of the project Prestigious project with highest Gotthard Base Tunnel requirements in terms of railway Altdorf Overall length 57 km technology Altdorf/Rynächt Length 4.4 km t 57 kilometres in length, the A Gotthard Base Tunnel is cur rently Erstfeld the longest railway tunnel in the world. Erstfeld Length 7.8 km It links the Swiss communities of Erst- feld and Bodio. The tunnel forms part Amsteg of the New Railway Link through the Alps (NRLA), which is at present the Amsteg largest construction project in Swit- Length 11.3 km zerland. With the construction of this "project of the century", north/south railway transit trafic will be further Sedrun improved, meaning that transit trafic Sedrun can be moved off the roads and onto Length 9.2 km the railways. More over, travel time for public transport services will be sig- Andermatt niicantly reduced – in conjunction with the Ceneri Base Tunnel which is currently being constructed – (the Faido travel time from Zurich to Milan will be Length 12.9 km cut by one hour), thereby considerably increasing the attractiveness of rail- way travel compared with taking the Ariolo car or plane. In future, passenger and freight trains will pass through the Faido tunnel at speeds of up to 250 km/h. -
Gotthard Bergstrecke’
University of Lugano, Switzerland Faculty of Economics The touristic future on and along the ‘Gotthard Bergstrecke’ Exploring the associations people have with the region, the motivations of prospective visitors, their requirements to a ‘Gottardo Express’ train offer and the potential of regional attractions. Master’s dissertation Author: Fabio Flepp Supervisor: Prof. Rico Maggi Second Reader: Stefano Scagnolari Academic year: 2014/2015 Submission date: December 2014 ! Contact Author: Fabio Flepp - Linkedin: https://ch.linkedin.com/in/fabio-flepp-a2567043 - Email: [email protected] Table of Contents LIST OF FIGURES IV LIST OF TABLES V LIST OF ABBREVIATIONS VI 1. INTRODUCTION 1 1.1 CHOICE OF TOPIC 1 1.1.1 ALPTRANSIT AND “BERGSTRECKE” 2 1.1.2 CONSEQUENCES, FEARS AND SIMILAR PLACES 3 1.1.3 DISCUSSIONS ABOUT THE FUTURE TOURISM DEVELOPMENT 4 1.2 RESEARCH AIM 5 1.3 OUTLINE 7 2. TRANSPORT AND TOURISM 8 2.1 GENERAL 8 2.2 TRANSPORTATION FOR TOURISM 9 2.3 (TOURISM-) IMPACTS OF NEW TRAFFIC INFRASTRUCTURE 9 2.4 TRANSPORT AS TOURISM & SLOW TRAVEL 10 2.5 RAIL TOURISM 12 2.5.1 MOTIVATION FOR TRAIN TRAVEL 12 2.5.2 HERITAGE RAILWAYS 13 3. GOTTHARD 14 3.1 HISTORY OF THE TRANSPORTATION LANDSCAPE 14 3.2 TOURISM HISTORY IN THE GOTTHARD REGION 15 3.3 TOURISM TODAY 17 3.3.1 TOURISM NUMBERS OF THE GOTTHARD REGION 18 3.3.2 TOURISM MONITOR 2013 18 3.3.3 PRESENT TOURISM PRODUCTS AND TOURISM CARD OFFERS 19 4. TOURISM PRODUCTS (+ DESTINATIONS) 23 4.1 GENERAL 23 4.2 CO-CREATION OF THE TOURISM EXPERIENCE 24 4.3 TOURISM PRODUCT DEVELOPMENT 25 I 5. -
Joint Taiwan-Canada Workshop on Construction Technologies
TUNNELLING IN SWITZERLAND: FROM LONG TRADITION TO THE LONGEST TUNNEL IN THE WORLD Andreas HENKE1 ABSTRACT Switzerland, where the main north-south European traffic streams cross the Alps, is called up to provide adequate transportation routes. The necessity to cross the mountains originated a great tradition in tunnel construction. Since the second half of the 19th century, through several eras, very long and deep traffic tunnels have been built. They were, for a long time, the longest tunnels in the world, like the Simplon rail tunnel, 20 km, opened to traffic in 1906, the Gotthard road tunnel, 17 km, opened to traffic in 1980, as well as the longest traffic tunnel in the world so far, the Gotthard Base Tunnel, 57 km, presently under construction and scheduled for operation in 2015. Viewing back on the long rail tunnels of the late 19th and early 20th century, the Gotthard, 15 km, the Simplon, 20 km and the Lötschberg, 14,6 km, we recall some interesting aspects of the related excavation techniques and the use of equipment and manpower. During the early 60ties the first generation of the important alpine road tunnels has been realized (Grand St. Bernard, 5,8 km, San Bernardino, 6,6 km), during the same time as the Mont Blanc Tunnel (11,6 km) in the West, between France and Italy. They were followed, 15 years later, by the classical highway tunnels along the main north-south highway route, the Seelisberg Tunnel (double tube of 9,3 km each) and the Gotthard Tunnel (17 km), both opened to traffic in 1980. -
Gotthard Basetunnel: Aspects of Long Tunnels
TBM Tunnelling in the Himalayan Region, Kathmandu, Nepal, January 27, 2011 FUTURE CIRCULAR COLLIDER WORKSHOP 13. / 14. FEBRUAR 2014, GENEVA Gotthard Basetunnel Aspects of Long Tunnels presented by: M.Sc. F Amberg Amberg Engineering Ltd., Regensdorf, Switzerland FCC Workshop, 13. / 14. February 2014, Geneva Content 1. Introduction 2. NEAT and Gotthard Basetunnel: From Concept to Completion 3. Gotthard Basetunnel: Some Constructional Aspects 4. Risk and Risk Mitigation 5. FCC and Gotthard Basetunnel FCC Workshop, 13. / 14. February 2014, Geneva Introduction Main Challenges of Long (and Deep) Tunnels . Tunnel length leeds to long construction time . Mechanization / automation of procedures, trend to the use of TBM in order to increase performance . Intermediate points of attack (if feasible) to cut construction time . Geological variety, (high overburden) . Investigations . Not possible / reasonable over the entire length . Higher remaining risks compared to other projects . Logistics . Long transport distances . Access shafts and galleries . Muck treatment, material deposits FCC Workshop, 13. / 14. February 2014, Geneva Content 1. Introduction 2. NEAT and Gotthard Basetunnel: From Concept to Completion 2.1 Background 2.2 Contractual and Organisational Aspects, Communication 2.3 Costs 3. Some Constructional Aspects Gotthard Basetunnel 3.1 Investigation, Logistics, Excavation, TBM 3.2 Environment, Muck Treatment 3.3 Safety, Fire Prevention and Control, Ventilation 4. Risk and Risk Mitigation 5. FCC and Gotthard Basetunnel FCC Workshop, 13. / 14. February 2014, Geneva More and More People and Goods Cross the Alps (Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002) FCC Workshop, 13. / 14. February 2014, Geneva Traffic Crossing the Alps, Estimated Increase between 1991 and 2020 (Source: www.alptransit .ch) FCC Workshop, 13. -
Selection of the Optimum Tunnel System for Long Railway Tunnels with Regard to the Entire Lifecycle
SELECTION OF THE OPTIMUM TUNNEL SYSTEM FOR LONG RAILWAY TUNNELS WITH REGARD TO THE ENTIRE LIFECYCLE H. Ehrbar & C. Tannò ETH Zurich, Switzerland H.-P. Vetsch Vetsch Rail Consult, Bützberg, Switzerland ABSTRACT: Since more than 30 years long tunnels with a total length of more than 50 kilometres exist. Many of them show a different tunnel system: double track tunnels with service tunnel, two single track tunnels and two single track tunnels with a service tunnel are the existing systems. The decision on the tunnel system of this long tunnels had to be taken at a time when only few information on operation and maintenance costs were available. Today more information on oration a maintenance is available. The paper shows, how the decision-making process should be made today considering the criteria construction, operation and safety with regard to the entire lifecycle. Recommendations on the selection of the tunnel system will be given for different boundary conditions, based on the operation experience of the long tunnel railway tunnels under operation. 1. PROJECT REQUIREMENTS OF LONG RAILWAY TUNNELS Railway tunnel constructions have the purpose of connecting cities, economic regions (Gotthard-Base Tunnel), countries (Eurotunnel, Cross Border Base Tunnel under the Ore Mountains) or even continents (Gibraltar Strait Tunnel) in order to ensure a rapid and environmentally friendly transport of people and goods. Mountains or straits are the typical topographical obstacles that must be overcome with a tunnel. Such tunnels become quickly very long (> 20 km length) due to special topographic boundary conditions for mountain base tunnels and strait tunnels. Figure 1: Longitudinal profile of a subsea tunnel (Eurotunnel) and a mountain base tunnel (Gotthard Base Tunnel) (source Wikipedia and AlpTransit Gotthard) Very long tunnels have to fulfil many project requirements, as each other civil work also. -
Swiss Pioneering Project Heralds the Dawn of a New Travel Era Construction of the World's Longest Train Tunnel in Switzerland Took 17 Years
Swiss pioneering project heralds the dawn of a new travel era Construction of the world's longest train tunnel in Switzerland took 17 years. Travel through it takes some 17 minutes. The new Gotthard Base Tunnel is a project of pioneering proportions – a once-in-a-century structure extending for 57 kilometres through the Alps. On Sunday 11 December 2016 the two-way tunnel enters into scheduled service, taking north-south-north travellers far quicker and more comfortably through the mighty mountain massif. Every winter sees the introduction in Switzerland of a new nationwide timetable, coordinating all public transport services across the entire country. This year will also see something extra special – the dawn of an exciting new travel era. The entering into service of the Gotthard Base Tunnel on Sunday 11 December 2016 will reduce travel time on Europe's most important north-south-north rail route by up to 40 minutes. The once-in-a-century structure extends for 57 kilometres through the mighty mountain massif, down to depths of up to 2300 metres. The tunnel will not only bring northern and southern Switzerland and Europe closer together by some 40 track kilometres – it will also eliminate the 1400-metre difference in high-Alpine altitude. When Switzerland's Ceneri Base Tunnel opens in 2020 the flat track along the entire north-south axis will also become a remarkable reality. Boring and blasting on five fronts Starting point for the building of the Gotthard Base Tunnel was Sedrun (Canton Graubünden) in 1999, when two 800-metre shafts were bored deep into the Alpine interior. -
Sustainable Transportation a Challenge for the 21St Century
On Track to the Future Sustainable Transportation A Challenge for the 21st Century www.thinkswiss.org Swiss – U.S. Dialogue “We think it is an excellent time to have a dialogue on public transportation as awareness is growing in the U.S. and in Switzerland. Based on the Swiss experi- ence, I strongly believe that public transportation only works with a strong public commitment.” Urs Ziswiler Swiss Ambassador to the United States of America “The project of the Embassy of Switzerland initiated a promising exchange and a dialogue on sustainable transportation. On behalf of the American Public Trans- portation Association and our colleagues in the United States, we look forward to building upon this relationship to further the goals of mobility and sustainability in both of our countries as we head into the 21st century.” Michael Schneider Co-Chair APTA Task Force on Public-Private Partnerships “With an excellent public transportation network, Switzerland makes a contribu- tion toward reducing CO2 emissions. The investments in railroad modernization constitute an important pillar of the economy. As a transit country in the heart of the old continent, we help Europe to grow closer together through good transpor- tation infrastructure.” Max Friedli Director of the Swiss Federal Office of Transport ThinkSwiss: Brainstorm the future. The ThinkSwiss program is under the auspices of Presence Switzerland, the Swiss State Secretariat for Education and Research (SER) and the Swiss Federal Department of Foreign Affairs. For more information, please visit www.thinkswiss.org. Concept and Author Partners Edition Embassy of Switzerland This brochure was created in collab- Printed in an edition of Office of Science, Technology oration with the Swiss Federal Office 10,000 copies. -
Verification of Rock Temperature Prediction Along the Gotthard Base Tunnel - a Prospect for Coming Tunnel Projects
World Tunnel Congress 2013 Geneva Underground – the way to the future! G. Anagnostou & H. Ehrbar (eds) Verification of rock temperature prediction along the Gotthard base tunnel - A prospect for coming tunnel projects L. Rybach(1), A. Busslinger(2) (1)Institute of Geophysics ETHZ, Zurich, Switzerland (2)HBI Haerter Consulting Engineers, Bern, Switzerland ABSTRACT: The a-priori knowledge of in-situ rock temperatures is of paramount importance in deep tunnels, e.g. for the design of ventilation and cooling during construction and operation. New 3D numerical model simulation was applied for rock temperature prognosis, with increasing degree of complexity (e.g. thermal and hydraulic ground properties, topography, deep groundwater circulation, transient coupled heat/fluid transfer, uplift and erosion). During tunnel excavation, temperature and rock thermal properties were regularly measured. The completion of the Gotthard base tunnel reveals a unique opportunity of verification. Prediction and finding remained in good agreement; generally well within ± 15 %. The lessons learned in predictive modeling and in its evaluation can be decisive for future tunnel projects. For prediction, similarly sophisticated modeling tools should be used. A reliable input data base must be supplied by well-organized cooperation of earth science specialists. The geothermal surface and boundary conditions like surface temperatures, basal heat flow and uplift/erosion patterns must be determined beforehand. Rock temperature measurements along the planned trace below the highest cover, measured in special boreholes, are crucially important in order to enable proper model calibration. By considering these prerequisites, reliable rock temperature predictions will be possible even in complicated terrain. 1 Introduction The knowledge of rock temperature is essential for the planning and construction of deep tunnels. -
Finished Vehicle Logistics by Rail in Europe
Finished Vehicle Logistics by Rail in Europe Version 3 December 2017 This publication was prepared by Oleh Shchuryk, Research & Projects Manager, ECG – the Association of European Vehicle Logistics. Foreword The project to produce this book on ‘Finished Vehicle Logistics by Rail in Europe’ was initiated during the ECG Land Transport Working Group meeting in January 2014, Frankfurt am Main. Initially, it was suggested by the members of the group that Oleh Shchuryk prepares a short briefing paper about the current status quo of rail transport and FVLs by rail in Europe. It was to be a concise document explaining the complex nature of rail, its difficulties and challenges, main players, and their roles and responsibilities to be used by ECG’s members. However, it rapidly grew way beyond these simple objectives as you will see. The first draft of the project was presented at the following Land Transport WG meeting which took place in May 2014, Frankfurt am Main. It received further support from the group and in order to gain more knowledge on specific rail technical issues it was decided that ECG should organise site visits with rail technical experts of ECG member companies at their railway operations sites. These were held with DB Schenker Rail Automotive in Frankfurt am Main, BLG Automotive in Bremerhaven, ARS Altmann in Wolnzach, and STVA in Valenton and Paris. As a result of these collaborations, and continuous research on various rail issues, the document was extensively enlarged. The document consists of several parts, namely a historical section that covers railway development in Europe and specific EU countries; a technical section that discusses the different technical issues of the railway (gauges, electrification, controlling and signalling systems, etc.); a section on the liberalisation process in Europe; a section on the key rail players, and a section on logistics services provided by rail. -
The Lötschberg Base Tunnel – Lessons Learned from the Construction of the Tunnel
THE LÖTSCHBERG BASE TUNNEL – LESSONS LEARNED FROM THE CONSTRUCTION OF THE TUNNEL François Vuilleumier1 & Markus Aeschbach2 Abstract - Construction work for the Lötschberg Base Tunnel in Switzerland is progressing according to schedule. As of the end of 2003 already 90 % of the total tunnel system has been broken out. With the building of the Lötschberg Base Tunnel the future connection of Switzerland with the most modern and fastest rail systems in Europe is assured. THE SWISS TRANSPORT POLICY Generalities The growth of all forms of traffic still seems unending. This puts more and more strain on the infrastructure, and capacity is rapidly becoming exhausted. The people of Switzerland have expressed their will and clearly spoken out in favour of modernising the railways and switching transit traffic from road to rail. The acceptance of the draft for the New Rail Alpine Routes (NEAT) in 1992 formed the basis for planning. With the performance-related levy on heavy goods traffic (LSVA) and the bill for modernising the railways, the legislature gave the green light in 1998 for Switzerland’s greatest ever investment programme. Modern links for Europe By building the NEAT, Switzerland is integrating itself in terms of passenger traffic into the successful European high-speed network. The NEAT system is designed as a network solution, together with the two Lötschberg-Simplon and Gotthard axes. The new rail link through the Alps involves two new rail tunnels, one through the Lötschberg, the Lötschberg Base Tunnel with a length of 34.6 km and the other one through the St. Gotthard, the Gotthard Base Tunnel with a length of 57 km. -
EP15-2003 Gotthard Tunnel Railway Line
BUILDING A MODERN RAILWAY LINE IN THE GOTTHARD BASE TUNNEL Nicolas Steinmann, AlpTransit Gotthard AG, Switzerland Patrick Favre, AlpTransit Gotthard AG, Switzerland ABSTRACT The Gotthard base tunnel, which will begin operating in 2011, will be the most impressive element of the new transalpine railway line through the Swiss Alps. In view of the difficult accessibility and extreme climatic conditions, ensuring the fast and reliable transit of more than 300 trains per day through the two 57 km long single-track galleries represents a considerable technical challenge. This paper illustrates the process of translating the constraints and design specifications of this project into appropriate technical solutions which it then outlines. 1 INTRODUCTION On 29th November 1998, Swiss voters decided that the confederation should fund two new north-south railway projects : the Lötschberg and the Gotthard base lines. Both are intended to complement existing railway lines built at the end of the 19th century. Zimmerberg Lötschberg Gotthard Ceneri Figure 1: North-South railway lines running through Switzerland The Gotthard base tunnel, which directly links the northern and southern sides of the Alps, is the most complex part of the new lines. It is one thing to excavate two 57 km long tunnels through a mountain under 2'000 m of rock - a feat in itself - but quite another to have high speed passengers trains and heavy goods trains run through them which is, of course, the ultimate goal of the project. 2 «RAILWAY EQUIPMENT» A railway system usually consists of the following elements: • A track for guiding the train • Electrical power brought from the distribution network to the train by the catenary • A signalling system (e.g.