Supplemental Tables4.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Tables4.Pdf Yano_Supplemental_Table_S4 Gene ontology – Biological process 1 of 9 Fold List Pop Pop GO Term Count % PValue Bonferroni Benjamini FDR Genes Total Hits Total Enrichment DLC1, CADM1, NELL2, CLSTN1, PCDHGA8, CTNNB1, NRCAM, APP, CNTNAP2, FERT2, RAPGEF1, PTPRM, MPDZ, SDK1, PCDH9, PTPRS, VEZT, NRXN1, MYH9, GO:0007155~cell CTNNA2, NCAM1, NCAM2, DDR1, LSAMP, CNTN1, 50 5.61 2.14E-08 510 311 7436 2.34 4.50E-05 4.50E-05 3.70E-05 adhesion ROR2, VCAN, DST, LIMS1, TNC, ASTN1, CTNND2, CTNND1, CDH2, NEO1, CDH4, CD24A, FAT3, PVRL3, TRO, TTYH1, MLLT4, LPP, NLGN1, PCDH19, LAMA1, ITGA9, CDH13, CDON, PSPC1 DLC1, CADM1, NELL2, CLSTN1, PCDHGA8, CTNNB1, NRCAM, APP, CNTNAP2, FERT2, RAPGEF1, PTPRM, MPDZ, SDK1, PCDH9, PTPRS, VEZT, NRXN1, MYH9, GO:0022610~biological CTNNA2, NCAM1, NCAM2, DDR1, LSAMP, CNTN1, 50 5.61 2.14E-08 510 311 7436 2.34 4.50E-05 4.50E-05 3.70E-05 adhesion ROR2, VCAN, DST, LIMS1, TNC, ASTN1, CTNND2, CTNND1, CDH2, NEO1, CDH4, CD24A, FAT3, PVRL3, TRO, TTYH1, MLLT4, LPP, NLGN1, PCDH19, LAMA1, ITGA9, CDH13, CDON, PSPC1 DCC, ENAH, PLXNA2, CAPZA2, ATP5B, ASTN1, PAX6, ZEB2, CDH2, CDH4, GLI3, CD24A, EPHB1, NRCAM, GO:0006928~cell CTTNBP2, EDNRB, APP, PTK2, ETV1, CLASP2, STRBP, 36 4.04 3.46E-07 510 205 7436 2.56 7.28E-04 3.64E-04 5.98E-04 motion NRG1, DCLK1, PLAT, SGPL1, TGFBR1, EVL, MYH9, YWHAE, NCKAP1, CTNNA2, SEMA6A, EPHA4, NDEL1, FYN, LRP6 PLXNA2, ADCY5, PAX6, GLI3, CTNNB1, LPHN2, EDNRB, LPHN3, APP, CSNK2A1, GPR45, NRG1, RAPGEF1, WWOX, SGPL1, TLE4, SPEN, NCAM1, DDR1, GRB10, GRM3, GNAQ, HIPK1, GNB1, HIPK2, PYGO1, GO:0007166~cell RNF138, ROR2, CNTN1, GNAS, PPM1L, ERBB4, surface receptor linked 70 7.85 9.24E-07 510 564 7436 1.81 0.001944439 6.49E-04 0.001598537 ADCYAP1R1, USP9X, BMPR2, CTNND1, CD24A, EPHB1, signal transduction PHIP, IGF1R, PTK2, BAI1, BAI3, AGRN, PIK3R3, AGRP, CSNK1A1, PLAT, DVL3, NLK, TGFBR1, DGKH, KCNK2, EPHA3, NTRK3, SEMA6A, EPHA4, LAMA1, ITGA9, NOTCH2, RGS20, NXN, FYN, DCP1A, CDON, GSK3B, GRLF1, LRP6, ZRANB1, CACNA1D ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, RORB, NFYB, SOX6, ZEB1, RORA, CNOT7, 9430076C15RIK, GO:0051254~positive ARID2, HNRPLL, CBFB, CTNNB1, APP, MEIS2, TCEA1, regulation of RNA 38 4.26 4.27E-06 510 247 7436 2.24 0.008947498 0.002244419 0.007381509 YAP1, AGRN, PLAGL2, ATF7IP, KLF12, SOX11, MED14, metabolic process RB1, WWTR1, NCOA2, CSRNP3, ZFP462, ETS1, HIPK2, PBX1, RBM14, NFIA, NFIB MYO5A, SYT1, GRIK2, CAPZA2, CLSTN1, HEXB, CACNB2, CD24A, CTNNB1, NRCAM, CTTNBP2, APP, GO:0019226~transmiss 27 3.03 6.70E-06 510 148 7436 2.66 0.014018365 0.002819528 0.011594273 PTK2, DMD, AGRN, PPP3CA, NRG1, SCD2, NRXN3, ion of nerve impulse NF1, NLGN1, NRXN1, QK, CTNNA2, GRM3, FYN, CACNA1C ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, RORB, GO:0045893~positive NFYB, SOX6, ZEB1, RORA, CNOT7, 9430076C15RIK, regulation of ARID2, CBFB, CTNNB1, APP, MEIS2, TCEA1, YAP1, 37 4.15 9.01E-06 510 245 7436 2.20 0.018790947 0.003156631 0.015578904 transcription, DNA- AGRN, PLAGL2, ATF7IP, KLF12, SOX11, MED14, RB1, dependent WWTR1, NCOA2, CSRNP3, ZFP462, ETS1, HIPK2, PBX1, RBM14, NFIA, NFIB ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, CTCF, RORB, NFYB, SOX6, ZEB1, RORA, CNOT7, GO:0010628~positive 9430076C15RIK, GLI3, ARID2, CBFB, CTNNB1, APP, regulation of gene 41 4.60 1.25E-05 510 289 7436 2.07 0.025921746 0.003744918 0.021568372 MEIS2, ETV1, TCEA1, YAP1, AGRN, PLAGL2, ATF7IP, expression KLF12, SOX11, MED14, RB1, WWTR1, NCOA2, CSRNP3, ZFP462, ETS1, DCP1A, HIPK2, PBX1, RBM14, NFIA, NFIB MYO5A, ADCY3, SYT1, GRIK2, CAPZA2, ADCY5, HEXB, CLSTN1, CTNND2, CACNB2, RORB, GRIN3A, CD24A, GO:0050877~neurologi CTNNB1, NRCAM, CTTNBP2, APP, PTK2, PDE1C, DMD, 40 4.48 1.27E-05 510 279 7436 2.09 0.026415026 0.003340679 0.021984306 cal system process PTN, PPP3CA, AGRN, NRG1, TUB, SCD2, RPGR, NRXN3, NF1, NLGN1, NRXN1, QK, CTNNA2, GRM3, FYN, GNB1, CACNA1C, PBX3, CACNA1D, FBXO11 DCC, ENAH, LIMS1, SHROOM3, PAX6, SOX6, CDH4, GLI3, EPHB1, CTNNB1, NRCAM, APP, PTK2, DMD, GO:0000902~cell 32 3.59 1.76E-05 510 203 7436 2.30 0.036326858 0.004103016 0.030386561 NUMB, ETV1, CLASP2, NRG1, DCLK1, DSCAM, morphogenesis CSNK1A1, PTPRZ1, TBCE, EVL, MYH9, WWTR1, CTNNA2, SEMA6A, LAMA1, EPHA4, NDEL1, DST ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, RORB, GO:0045935~positive NFYB, SOX6, ZEB1, RORA, CNOT7, 9430076C15RIK, regulation of GLI3, ARID2, HNRPLL, CBFB, CTNNB1, APP, MEIS2, nucleobase, nucleoside, 42 4.71 1.97E-05 510 305 7436 2.01 0.040546096 0.004130546 0.033989246 ETV1, TCEA1, YAP1, AGRN, PLAGL2, ATF7IP, KLF12, nucleotide and nucleic SOX11, MED14, RB1, WWTR1, NCOA2, CSRNP3, acid metabolic process ZFP462, ETS1, DCP1A, HIPK2, BRE, PBX1, RBM14, NFIA, NFIB GO:0045944~positive HMGB2, CNBP, PAX6, SOX5, CASK, SOX6, ZEB1, regulation of RORA, CNOT7, ARID2, CBFB, CTNNB1, APP, MEIS2, transcription from 32 3.59 2.14E-05 510 205 7436 2.28 0.044143192 0.004095876 0.037073132 TCEA1, AGRN, YAP1, PLAGL2, KLF12, SOX11, MED14, RNA polymerase II RB1, WWTR1, NCOA2, ZFP462, CSRNP3, ETS1, HIPK2, promoter PBX1, RBM14, NFIA, NFIB Yano_Supplemental_Table_S4 Gene ontology – Biological process 2 of 9 Fold List Pop Pop GO Term Count % PValue Bonferroni Benjamini FDR Genes Total Hits Total Enrichment ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, RORB, NFYB, SOX6, ZEB1, RORA, CNOT7, 9430076C15RIK, GO:0045941~positive GLI3, ARID2, CBFB, CTNNB1, APP, MEIS2, ETV1, regulation of 40 4.48 2.28E-05 510 286 7436 2.04 0.046838229 0.003989574 0.03939121 TCEA1, YAP1, AGRN, PLAGL2, ATF7IP, KLF12, SOX11, transcription MED14, RB1, WWTR1, NCOA2, CSRNP3, ZFP462, ETS1, DCP1A, HIPK2, PBX1, RBM14, NFIA, NFIB LIMS1, CADM1, CLSTN1, ASTN1, PCDHGA8, NLGN1, GO:0016337~cell-cell CTNND1, PCDH9, VEZT, CDH2, MYH9, CDH4, CD24A, 25 2.80 2.31E-05 510 140 7436 2.60 0.047566658 0.00374184 0.040018869 adhesion PCDH19, CTNNB1, CTNNA2, NRCAM, NCAM1, CDH13, FAT3, PVRL3, CDON, TTYH1, ROR2, RAPGEF1 DCC, ENAH, PTPRZ1, PAX6, TBCE, EVL, CDH4, GLI3, GO:0048812~neuron EPHB1, CTNNA2, NRCAM, SEMA6A, EPHA4, APP, projection 22 2.47 2.83E-05 510 115 7436 2.79 0.057817626 0.004244994 0.048902575 PTK2, NDEL1, DMD, NUMB, ETV1, DST, DCLK1, morphogenesis DSCAM PLAT, DCC, SGPL1, PLXNA2, CAPZA2, ATP5B, GO:0016477~cell TGFBR1, ASTN1, PAX6, ZEB2, CDH2, MYH9, YWHAE, 25 2.80 2.95E-05 510 142 7436 2.57 0.060209955 0.004131361 0.050989614 migration CD24A, NCKAP1, CTNNA2, CTTNBP2, EDNRB, PTK2, NDEL1, FYN, LRP6, CLASP2, NRG1, DCLK1 ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, RORB, NFYB, SOX6, ZEB1, RORA, CNOT7, 9430076C15RIK, GO:0051173~positive GLI3, ARID2, HNRPLL, CBFB, CTNNB1, APP, MEIS2, regulation of nitrogen 42 4.71 3.40E-05 510 312 7436 1.96 0.069173172 0.004470106 0.058856143 ETV1, TCEA1, YAP1, AGRN, PLAGL2, ATF7IP, KLF12, compound metabolic SOX11, MED14, RB1, WWTR1, NCOA2, CSRNP3, process ZFP462, ETS1, DCP1A, HIPK2, BRE, PBX1, RBM14, NFIA, NFIB CAPZA2, ATP5B, CASK, EIF2A, D8ERTD82E, CTTNBP2, APP, CSNK2A1, SLK, PAK2, PAK3, FERT2, TLK1, BRD4, AKT3, PTPRK, PAN3, PTPRM, ROCK1, PTPRG, WNK1, PI4KA, CDK8, PTPRS, PTPRT, MARK3, PRKCE, MARK1, MAP4K3, ATP6V1A, MAP4K4, DDR1, GO:0006793~phosphor 68 7.62 3.60E-05 510 603 7436 1.64 0.072975671 0.004447461 0.062216111 EIF2AK1, HIPK1, HIPK2, ROR2, MAPK8, PPM1L, us metabolic process CAMK1D, ERBB4, SSH2, BMPR2, ABI1, EPHB1, IGF1R, PTK2, TTBK2, PPP2CA, PPP1R12A, TNKS, PPP3CA, DCLK1, GPD2, CSNK1A1, PTPRD, TAOK1, PTPRZ1, NLK, TGFBR1, MAP2K4, EPHA3, NTRK3, EPHA4, ICK, FYN, ATP6V1E1, RSRC1, GSK3B CAPZA2, ATP5B, CASK, EIF2A, D8ERTD82E, CTTNBP2, APP, CSNK2A1, SLK, PAK2, PAK3, FERT2, TLK1, BRD4, AKT3, PTPRK, PAN3, PTPRM, ROCK1, PTPRG, WNK1, PI4KA, CDK8, PTPRS, PTPRT, MARK3, PRKCE, MARK1, MAP4K3, ATP6V1A, MAP4K4, DDR1, GO:0006796~phosphat 68 7.62 3.60E-05 510 603 7436 1.64 0.072975671 0.004447461 0.062216111 EIF2AK1, HIPK1, HIPK2, ROR2, MAPK8, PPM1L, e metabolic process CAMK1D, ERBB4, SSH2, BMPR2, ABI1, EPHB1, IGF1R, PTK2, TTBK2, PPP2CA, PPP1R12A, TNKS, PPP3CA, DCLK1, GPD2, CSNK1A1, PTPRD, TAOK1, PTPRZ1, NLK, TGFBR1, MAP2K4, EPHA3, NTRK3, EPHA4, ICK, FYN, ATP6V1E1, RSRC1, GSK3B MYO5A, SYT1, GRIK2, NRXN3, CAPZA2, CLSTN1, GO:0007268~synaptic NLGN1, CACNB2, NRXN1, CD24A, CTNNB1, CTNNA2, 21 2.35 6.09E-05 510 112 7436 2.73 0.120391176 0.007101221 0.10530106 transmission CTTNBP2, APP, PTK2, GRM3, DMD, AGRN, PPP3CA, CACNA1C, NRG1 DCC, ENAH, PTPRZ1, PAX6, TBCE, EVL, CDH4, GLI3, GO:0007409~axonogen 20 2.24 7.70E-05 510 105 7436 2.78 0.149620401 0.00849385 0.133023852 EPHB1, CTNNA2, NRCAM, SEMA6A, EPHA4, APP, esis PTK2, NDEL1, NUMB, ETV1, DST, DCLK1 GO:0000904~cell DCC, ENAH, PTPRZ1, PAX6, TBCE, EVL, MYH9, CDH4, morphogenesis GLI3, EPHB1, CTNNB1, CTNNA2, NRCAM, SEMA6A, 23 2.58 8.80E-05 510 133 7436 2.52 0.169196272 0.009225269 0.15212438 involved in EPHA4, APP, PTK2, NDEL1, NUMB, ETV1, DST, DCLK1, differentiation DSCAM PLAT, DCC, SGPL1, PLXNA2, CAPZA2, ATP5B, GO:0048870~cell TGFBR1, ASTN1, PAX6, ZEB2, CDH2, MYH9, YWHAE, 25 2.80 9.13E-05 510 152 7436 2.40 0.174893647 0.009112654 0.157767323 motility CD24A, NCKAP1, CTNNA2, CTTNBP2, EDNRB, PTK2, NDEL1, FYN, LRP6, CLASP2, NRG1, DCLK1 PLAT, DCC, SGPL1, PLXNA2, CAPZA2, ATP5B, GO:0051674~localizati TGFBR1, ASTN1, PAX6, ZEB2, CDH2, MYH9, YWHAE, 25 2.80 9.13E-05 510 152 7436 2.40 0.174893647 0.009112654 0.157767323 on of cell CD24A, NCKAP1, CTNNA2, CTTNBP2, EDNRB, PTK2, NDEL1, FYN, LRP6, CLASP2, NRG1, DCLK1 DCC, ENAH, PAX6, RORB, GRIN3A, CDH4, GLI3, GO:0048666~neuron CD24A, EPHB1, NRCAM, APP, PTK2, DMD, NUMB, 28 3.14 1.02E-04 510 182 7436 2.24 0.192801733 0.009688487 0.175759342 development ETV1, DCLK1, DSCAM, RPGR, PTPRZ1, TBCE, EVL, CTNNA2, SEMA6A, EPHA4, NDEL1, GNAQ, PBX3, DST ENY2, HMGB2, CNBP, SOX5, PAX6, CASK, RORB, NFYB, SOX6, ZEB1, RORA, CNOT7, 9430076C15RIK, GO:0031328~positive GLI3, ARID2, CBFB, CTNNB1, APP, MEIS2, NPM1, regulation
Recommended publications
  • Nuclear and Mitochondrial Genome Defects in Autisms
    UC Irvine UC Irvine Previously Published Works Title Nuclear and mitochondrial genome defects in autisms. Permalink https://escholarship.org/uc/item/8vq3278q Journal Annals of the New York Academy of Sciences, 1151(1) ISSN 0077-8923 Authors Smith, Moyra Spence, M Anne Flodman, Pamela Publication Date 2009 DOI 10.1111/j.1749-6632.2008.03571.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE YEAR IN HUMAN AND MEDICAL GENETICS 2009 Nuclear and Mitochondrial Genome Defects in Autisms Moyra Smith, M. Anne Spence, and Pamela Flodman Department of Pediatrics, University of California, Irvine, California In this review we will evaluate evidence that altered gene dosage and structure im- pacts neurodevelopment and neural connectivity through deleterious effects on synap- tic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrixtm SNP 6.0 microar- ray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Col- lectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chro- mosome.
    [Show full text]
  • Sanjay Kumar Gupta
    The human CCHC-type Zinc Finger Nucleic Acid Binding Protein (CNBP) binds to the G-rich elements in target mRNA coding sequences and promotes translation Das humane CCHC-Typ-Zinkfinger-Nukleinsäure-Binde-Protein (CNBP) bindet an G-reiche Elemente in der kodierenden Sequenz seiner Ziel-mRNAs und fördert deren Translation Doctoral thesis for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität WürzBurg, Section: Biomedicine suBmitted By Sanjay Kumar Gupta from Varanasi, India WürzBurg, 2016 1 Submitted on: …………………………………………………………..…….. Office stamp Members of the Promotionskomitee: Chairperson: Prof. Dr. Alexander Buchberger Primary Supervisor: Dr. Stefan Juranek Supervisor (Second): Prof. Dr. Utz Fischer Supervisor (Third): Dr. Markus Landthaler Date of Public Defence: …………………………………………….………… Date of Receipt of Certificates: ………………………………………………. 2 Summary The genetic information encoded with in the genes are transcribed and translated to give rise to the functional proteins, which are building block of a cell. At first, it was thought that the regulation of gene expression particularly occurs at the level of transcription By various transcription factors. Recent discoveries have shown the vital role of gene regulation at the level of RNA also known as post-transcriptional gene regulation (PTGR). Apart from non-coding RNAs e.g. micro RNAs, various RNA Binding proteins (RBPs) play essential role in PTGR. RBPs have been implicated in different stages of mRNA life cycle ranging from splicing, processing, transport, localization and decay. In last 20 years studies have shown the presence of hundreds of RBPs across eukaryotic systems many of which are widely conserved. Given the rising numBer of RBPs and their link to human diseases it is quite evident that RBPs have major role in cellular processes and their regulation.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • The Zinc-Finger Protein CNBP Is Required for Forebrain Formation In
    Development 130, 1367-1379 1367 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00349 The zinc-finger protein CNBP is required for forebrain formation in the mouse Wei Chen1,2, Yuqiong Liang1, Wenjie Deng1, Ken Shimizu1, Amir M. Ashique1,2, En Li3 and Yi-Ping Li1,2,* 1Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA 2Harvard-Forsyth Department of Oral Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA 3Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA *Author for correspondence (e-mail: [email protected]) Accepted 19 December 2002 SUMMARY Mouse mutants have allowed us to gain significant insight (AME), headfolds and forebrain. In Cnbp–/– embryos, the into axis development. However, much remains to be visceral endoderm remains in the distal tip of the conceptus learned about the cellular and molecular basis of early and the ADE fails to form, whereas the node and notochord forebrain patterning. We describe a lethal mutation mouse form normally. A substantial reduction in cell proliferation strain generated using promoter-trap mutagenesis. The was observed in the anterior regions of Cnbp–/– embryos at mutants exhibit severe forebrain truncation in homozygous gastrulation and neural-fold stages. In these regions, Myc mouse embryos and various craniofacial defects in expression was absent, indicating CNBP targets Myc in heterozygotes. We show that the defects are caused by rostral head formation. Our findings demonstrate that disruption of the gene encoding cellular nucleic acid Cnbp is essential for the forebrain induction and binding protein (CNBP); Cnbp transgenic mice were able specification.
    [Show full text]
  • Chylomicron Retention Disease)
    Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease). Amandine Georges, Jessica Bonneau, Dominique Bonnefont-Rousselot, Jacqueline Champigneulle, Jean Rab`es,Marianne Abifadel, Thomas Aparicio, Jean Guenedet, Eric Bruckert, Catherine Boileau, et al. To cite this version: Amandine Georges, Jessica Bonneau, Dominique Bonnefont-Rousselot, Jacqueline Champigneulle, Jean Rab`es,et al.. Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease).. Orphanet Journal of Rare Diseases, BioMed Central, 2011, 6 (1), pp.1. <10.1186/1750-1172-6-1>. <inserm-00663694> HAL Id: inserm-00663694 http://www.hal.inserm.fr/inserm-00663694 Submitted on 27 Jan 2012 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Georges et al. Orphanet Journal of Rare Diseases 2011, 6:1 http://www.ojrd.com/content/6/1/1 RESEARCH Open Access Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson’s disease (Chylomicron retention disease) Amandine Georges1, Jessica Bonneau2, Dominique Bonnefont-Rousselot3, Jacqueline Champigneulle4, Jean P Rabès2,8, Marianne Abifadel2, Thomas Aparicio5, Jean C Guenedet4,9, Eric Bruckert6, Catherine Boileau2,8, Alain Morali1, Mathilde Varret2, Lawrence P Aggerbeck7, Marie E Samson-Bouma2* Abstract Background: Anderson’s disease (AD) or chylomicron retention disease (CMRD) is a very rare hereditary lipid malabsorption syndrome.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • PTPRA Phosphatase Regulates GDNF-Dependent RET Signaling and Inhibits the RET Mutant MEN2A Oncogenic Potential
    Journal Pre-proof PTPRA phosphatase regulates GDNF-dependent RET signaling and inhibits the RET mutant MEN2A oncogenic potential Leena Yadav, Elina Pietilä, Tiina Öhman, Xiaonan Liu, Arun K. Mahato, Yulia Sidorova, Kaisa Lehti, Mart Saarma, Markku Varjosalo PII: S2589-0042(20)30055-9 DOI: https://doi.org/10.1016/j.isci.2020.100871 Reference: ISCI 100871 To appear in: ISCIENCE Received Date: 3 August 2019 Revised Date: 15 January 2020 Accepted Date: 26 January 2020 Please cite this article as: Yadav, L., Pietilä, E., Öhman, T., Liu, X., Mahato, A.K., Sidorova, Y., Lehti, K., Saarma, M., Varjosalo, M., PTPRA phosphatase regulates GDNF-dependent RET signaling and inhibits the RET mutant MEN2A oncogenic potential, ISCIENCE (2020), doi: https://doi.org/10.1016/ j.isci.2020.100871. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Growth factor RET PTPRA Cell surface Ras P P Complex formation RAF MEK ERK Growth Nucleus Proliferation Gene expression Migration 1 PTPRA phosphatase regulates GDNF-dependent RET signaling and inhibits the RET mutant MEN2A oncogenic potential Authors Leena Yadav 1, Elina Pietilä 3# , Tiina Öhman 1# , Xiaonan Liu 1, Arun K.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart
    RESEARCH ARTICLE Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart Chung-Il An1☯*, Yasunori Ichihashi2☯¤a¤b*, Jie Peng3, Neelima R. Sinha2, Nobuko Hagiwara1* 1 Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America, 2 Department of Plant Biology, University of California Davis, Davis, California, United States of America, 3 Department of Statistics, University of California Davis, Davis, California, United States of America ☯ These authors contributed equally to this work. a11111 ¤a Current address: RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan ¤b Current address: JST, PRESTO, Kawaguchi, Saitama, Japan * [email protected] (CA); [email protected] (YI); [email protected] (NH) Abstract OPEN ACCESS The postnatal heart undergoes highly coordinated developmental processes culminating in Citation: An C-I, Ichihashi Y, Peng J, Sinha NR, the complex physiologic properties of the adult heart. The molecular mechanisms of postna- Hagiwara N (2016) Transcriptome Dynamics and tal heart development remain largely unexplored despite their important clinical implications. Potential Roles of Sox6 in the Postnatal Heart. To gain an integrated view of the dynamic changes in gene expression during postnatal PLoS ONE 11(11): e0166574. doi:10.1371/journal. heart development at the organ level, time-series transcriptome analyses of the postnatal pone.0166574 hearts of neonatal through adult mice (P1, P7, P14, P30, and P60) were performed using a Editor: Katherine Yutzey, Cincinnati Children's newly developed bioinformatics pipeline. We identified functional gene clusters by principal Hospital Medical Center, UNITED STATES component analysis with self-organizing map clustering which revealed organized, discrete Received: July 16, 2016 gene expression patterns corresponding to biological functions associated with the neona- Accepted: October 31, 2016 tal, juvenile and adult stages of postnatal heart development.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]