Accompanies CD8 T Cell Effector Function Global DNA Methylation

Total Page:16

File Type:pdf, Size:1020Kb

Accompanies CD8 T Cell Effector Function Global DNA Methylation Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M. Boss*,† The differentiation of CD8 T cells in response to acute infection results in the acquisition of hallmark phenotypic effector functions; however, the epigenetic mechanisms that program this differentiation process on a genome-wide scale are largely unknown. In this article, we report the DNA methylomes of Ag-specific naive and day-8 effector CD8 T cells following acute lymphocytic chorio- meningitis virus infection. During effector CD8 T cell differentiation, DNA methylation was remodeled such that changes in DNA methylation at gene promoter regions correlated negatively with gene expression. Importantly, differentially methylated regions were enriched at cis-elements, including enhancers active in naive T cells. Differentially methylated regions were associated with cell type–specific transcription factor binding sites, and these transcription factors clustered into modules that define networks targeted Downloaded from by epigenetic regulation and control of effector CD8 T cell function. Changes in the DNA methylation profile following CD8 T cell activation revealed numerous cellular processes, cis-elements, and transcription factor networks targeted by DNA methylation. Together, the results demonstrated that DNA methylation remodeling accompanies the acquisition of the CD8 T cell effector phenotype and repression of the naive cell state. Therefore, these data provide the framework for an epigenetic mechanism that is required for effector CD8 T cell differentiation and adaptive immune responses. The Journal of Immunology, 2013, 191: 3419–3429. n response to acute infection, naive CD8 T cells differentiate Epigenetic mechanisms ensure the maintenance and inheritance http://www.jimmunol.org/ into effector cells capable of killing infected cells and clearing of gene-expression programs through cell division and include DNA I the infection. Effector CD8 T cell function is characterized by methylation and histone modifications (8, 9). Mammalian DNA the induction of a specific transcriptional program that drives rapid methylation primarily involves the methylation of CpG dinucleo- proliferation, expression of key cytokines and effector proteins tides and is associated with a repressed epigenetic state when found necessary for cell killing, and the capacity to migrate into infected in gene promoters (8, 10–12). DNA methylation is maintained or tissue (1–4). Upon Ag clearance, 90% of effector cells undergo deposited de novo by one of three DNA methyltransferases (DNMT1, apoptosis, whereas the remaining cells complete their differenti- DNMT3A, or DNMT3B). Methylated CpG DNA is recognized/ interpreted by a family of methyl-CpG–binding proteins (10, 13, ation into a pool of memory CD8 T cells (5). A number of the by guest on October 1, 2021 critical transcription factors that drive this differentiation program, 14). DNA methylation readers and writers are vital components of such as Blimp-1 (Prdm1), Tbet (Tbx21), and Eomesodermin (Eomes) the adaptive immune response. Deletion of the maintenance meth- have been identified and characterized (2, 6, 7). However, little is yltransferase DNMT1 during T cell development resulted in normal known about the epigenetic programs that enforce the induced gene lineage formation but led to homeostatic defects and the inability expression changes and permit faithful inheritance of effector to silence lineage-specific genes in CD4 T cell differentiation (15). function during the proliferative phase of infection. Similarly, deletion of the de novo methyltransferase DNMT3A in CD4 T cells did not affect lineage specification but permitted ectopic cytokine expression and increased lineage plasticity (16). *Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322; Interestingly, conditional deletion of DNMT1 at the time of CD8 † and Emory Vaccine Center, Emory University, Atlanta, GA 30322 T cell activation resulted in a diminished effector pool, fewer Received for publication May 24, 2013. Accepted for publication July 22, 2013. memory CD8 T cells, and a reduced ability to clear Ag (17). In This work was supported by National Institutes of Health Grants PO1AI 080192-05 contrast, deletion of the DNA methylation reader MBD2 had no and U19 AI05726-08 to (J.M.B. and R.A.), as well as by an American Cancer Society effect on proliferation but inhibited the formation of a functional Postdoctoral Fellowship (PF-09-134-01-MPC to B.A.Y.). memory compartment following viral challenge (18). These studies The sequences presented in this article have been submitted to the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under accession number demonstrate the importance of DNA methylation in maintaining GSE44638. phenotypic programs during the rapid proliferation of effector CD8 Address correspondence and reprint requests to Dr. Jeremy M. Boss, Emory Univer- T cells and indicate that correct interpretation of methylated se- sity, 1510 Clifton Road, Room 3001, Atlanta, GA 30322. E-mail address: jmboss@ quences is functionally important for the adaptive immune response. emory.edu The dynamic nature of DNA methylation in hematopoietic cell The online version of this article contains supplemental material. types has been cataloged during early differentiation of the myeloid Abbreviations used in this article: cBS, clonal bisulfite sequencing; ChIP-seq, chro- and lymphoid lineages (19), mouse erythropoiesis (20), and between matin immunoprecipitation sequencing; D8, day 8; DMR, differentially methylated region; ENCODE, Encyclopedia of DNA Elements; ES, embryonic stem; FDR, human regulatory T cells and naive CD4 cells (21). However, none false discovery rate; GO, Gene Ontology; H3K27ac, histone H3 lysine 27 acetylated; of these studies profiled a clonal or Ag-specific population of cells. H3K4me, histone H3 lysine 4 methyl; H3K27me, histone H3 lysine 27 methyl; LCMV, lymphocytic choriomeningitis virus; MeDIP, methyl DNA immunoprecipitation; A recent study in CD4 T cells demonstrated that developmental MeDIP-seq, methyl DNA immunoprecipitation sequencing; PDE, putative distal en- TCR-specific signaling can establish a pre-existing methylation hancer; RefSeq, NCBI Reference Sequence Database; rpm, reads per million; TSS, profile, such that only CD4 T cells that upregulated Foxp3 and transcription start site. exhibited a specific methylation epitype were able to differentiate Copyright Ó 2013 by The American Association of Immunologists, Inc. 0022-1767/13/$16.00 into the regulatory T cell lineage (22). These data suggest epi- www.jimmunol.org/cgi/doi/10.4049/jimmunol.1301395 3420 EFFECTOR CD8 T CELL EPIGENETICS genetic heterogeneity in the naive CD4 T cell pool and highlight to the manufacturer’s recommended protocol (Illumina). Following agarose the importance and value of profiling the linear differentiation of gel size selection, naive and D8 effector CD8 T cell samples were im- m cells that possess a single TCR. munoprecipitated with 1 g of an anti-5-methylcytosine Ab (Eurogentec) at 4˚C overnight. Methylated DNA was purified, and one third of the Dynamic DNA methylation in CD8 T cells has been studied only sample was amplified for 12 cycles by PCR along with the input fraction at the single gene level. The effector cytokine Ifng and inhibitory to generate sequencing libraries. Libraries were quantitated by Agilent receptor Pdcd1 genes are methylated and silenced in naive CD8 BioAnalyzer, and each library was sequenced using a single-end, 50-bp T cells, demethylated and expressed at the effector stage, and protocol on a single lane of a HiSeq 2000 instrument at the Southern California Genotyping Consortium. All sequencing data are available at remethylated when expression is silenced in memory CD8 T cells the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/ (23, 24). Methylation
Recommended publications
  • Hippo/YAP Signaling Pathway: a Promising Therapeutic Target In
    Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer, Franck Verrecchia To cite this version: Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer, Franck Verrecchia. Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers?. Can- cers, MDPI, 2020, 12 (3), pp.645. 10.3390/cancers12030645. inserm-03004096 HAL Id: inserm-03004096 https://www.hal.inserm.fr/inserm-03004096 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. cancers Review Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer and Franck Verrecchia * INSERM, UMR1238, Bone Sarcoma and Remodeling of Calcified Tissues, Nantes University, 44035 Nantes, France; [email protected] (S.M.); geoff[email protected] (G.D.); [email protected] (F.R.); [email protected] (B.B.-L.-R.) * Correspondence: [email protected]; Tel.: +33-244769116 Received: 4 February 2020; Accepted: 7 March 2020; Published: 10 March 2020 Abstract: Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors.
    [Show full text]
  • Peripheral T Cells Ets-1 Maintains IL-7 Receptor Expression In
    The Journal of Immunology Ets-1 Maintains IL-7 Receptor Expression in Peripheral T Cells Roland Grenningloh,*,† Tzong-Shyuan Tai,* Nicole Frahm,†,‡,1 Tomoyuki C. Hongo,‡ Adam T. Chicoine,‡ Christian Brander,†,‡,x,{ Daniel E. Kaufmann,†,‡,‖ and I-Cheng Ho*,† The expression of CD127, the IL-7–binding subunit of the IL-7 R, is tightly regulated during the development and activation of T cells and is reduced during chronic viral infection. However, the molecular mechanism regulating the dynamic expression of CD127 is still poorly understood. In this study, we report that the transcription factor Ets-1 is required for maintaining the expression of CD127 in murine peripheral T cells. Ets-1 binds to and activates the CD127 promoter, and its absence leads to reduced CD127 expression, attenuated IL-7 signaling, and impaired IL-7–dependent homeostatic proliferation of T cells. The expression of CD127 and Ets-1 is strongly correlated in human T cells. Both CD127 and Ets-1 expression are decreased in CD8+ T cells during HIV infection. In addition, HIV-associated loss of CD127 is only observed in Ets-1low effector memory and central memory but not in Ets-1high naive CD8+ T cells. Taken together, our data identify Ets-1 as a critical regulator of CD127 expression in T cells. The Journal of Immunology, 2011, 186: 969–976. nterleukin-7 signals are required for T cell development, GABPa or another Ets protein is responsible for maintaining maintaining the naive T cell pool, mounting proper primary CD127 expression in peripheral T cells is unknown. I responses, and inducing and maintaining CD4+ and CD8+ Ets-1 (E26 transformation-specific sequence) is the founding T cell memory (1–3).
    [Show full text]
  • Mechanotransduction Signaling in Podocytes from Fluid Flow Shear Stress
    Children's Mercy Kansas City SHARE @ Children's Mercy Manuscripts, Articles, Book Chapters and Other Papers 1-1-2018 Mechanotransduction signaling in podocytes from fluid flow shear stress. Tarak Srivastava Children's Mercy Hospital Hongying Dai Children's Mercy Hospital Daniel P. Heruth Children's Mercy Hospital Uri S. Alon Children's Mercy Hospital Robert E. Garola Children's Mercy Hospital See next page for additional authors Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers Part of the Animal Structures Commons, Medical Biophysics Commons, Medical Genetics Commons, Nephrology Commons, and the Pathology Commons Recommended Citation Srivastava, T., Dai, H., Heruth, D. P., Alon, U. S., Garola, R. E., Zhou, J., Duncan, R. S., El-Meanawy, A., McCarthy, E. T., Sharma, R., Johnson, M. L., Savin, V. J., Sharma, M. Mechanotransduction signaling in podocytes from fluid flow shear stress. American journal of physiology. Renal physiology 314, 22-22 (2018). This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact [email protected]. Creator(s) Tarak Srivastava, Hongying Dai, Daniel P. Heruth, Uri S. Alon, Robert E. Garola, Jianping Zhou, R Scott Duncan, Ashraf El-Meanawy, Ellen T. McCarthy, Ram Sharma, Mark L. Johnson, Virginia J. Savin, and Mukut Sharma This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/1227 Am J Physiol Renal Physiol 314: F22–F34, 2018. First published September 6, 2017; doi:10.1152/ajprenal.00325.2017.
    [Show full text]
  • Supp Material.Pdf
    Legends for Supplemental Figures and Tables Figure S1. Expression of Tlx during retinogenesis. (A) Staged embryos were stained for β- galactosidase knocked into the Tlx locus to indicate Tlx expression. Tlx was expressed in the neural blast layer in the early phase of neural retina development (blue signal). (B) Expression of Tlx in neural retina was quantified using Q-PCR at multiple developmental stages. Figure S2. Expression of p27kip1 and cyclin D1 (Ccnd1) at various developmental stages in wild-type or Tlx-/- retinas. (A) Q-PCR analysis of p27kip1 mRNA expression. (B) Western blotting analysis of p27kip1 protein expression. (C) Q-PCR analysis of cyclin D1 mRNA expression. Figure S3. Q-PCR analysis of mRNA expression of Sf1 (A), Lrh1 (B), and Atn1 (C) in wild-type mouse retinas. RNAs from testis and liver were used as controls. Table S1. List of genes dysregulated both at E15.5 and P0 Tlx-/- retinas. Gene E15.5 P0 Cluste Gene Title Fold Fold r Name p-value p-value Change Change nuclear receptor subfamily 0, group B, Nr0b1 1.65 0.0024 2.99 0.0035 member 1 1 Pou4f3 1.91 0.0162 2.39 0.0031 POU domain, class 4, transcription factor 3 1 Tcfap2d 2.18 0.0000 2.37 0.0001 transcription factor AP-2, delta 1 Zic5 1.66 0.0002 2.02 0.0218 zinc finger protein of the cerebellum 5 1 Zfpm1 1.85 0.0030 1.88 0.0025 zinc finger protein, multitype 1 1 Pten 1.60 0.0155 1.82 0.0131 phospatase and tensin homolog 2 Itgb5 -1.85 0.0063 -1.85 0.0007 integrin beta 5 2 Gpr49 6.86 0.0001 15.16 0.0001 G protein-coupled receptor 49 3 Cmkor1 2.60 0.0007 2.72 0.0013
    [Show full text]
  • Identification of GA-Binding Protein Transcription Factor Alpha Subunit
    International Journal of Molecular Sciences Article Identification of GA-Binding Protein Transcription Factor Alpha Subunit (GABPA) as a Novel Bookmarking Factor Shunya Goto 1, Masashi Takahashi 1, Narumi Yasutsune 1, Sumiki Inayama 1, Dai Kato 2, Masashi Fukuoka 3, Shu-ichiro Kashiwaba 1 and Yasufumi Murakami 1,2,* 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; [email protected] (S.G.); [email protected] (M.T.); [email protected] (N.Y.); [email protected] (S.I.); [email protected] (S.K.) 2 Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan; [email protected] 3 Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5876-1717 (ext. 1919); Fax: +81-3-5876-1470 Received: 7 February 2019; Accepted: 27 February 2019; Published: 4 March 2019 Abstract: Mitotic bookmarking constitutes a mechanism for transmitting transcriptional patterns through cell division. Bookmarking factors, comprising a subset of transcription factors (TFs), and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription in the early G1 phase. However, the specific TFs that act as bookmarking factors remain largely unknown. Previously, we identified the “early G1 genes” and screened TFs that were predicted to bind to the upstream region of these genes, then identified GA-binding protein transcription factor alpha subunit (GABPA) and Sp1 transcription factor (SP1) as candidate bookmarking factors.
    [Show full text]
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Multiple Facets of Jund Gene Expression Are Atypical Among AP-1 Family Members
    Oncogene (2008) 27, 4757–4767 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $30.00 www.nature.com/onc REVIEW Multiple facets of junD gene expression are atypical among AP-1 family members JM Hernandez1, DH Floyd2, KN Weilbaecher2, PL Green1,3 and K Boris-Lawrie1,3 1Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA and 2Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA and 3Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA JunD is a versatile AP-1 transcription factor that can 2003; Milde-Langosch, 2005). The AP-1 component activate or repress a diverse collection of target genes. proteins are characterized structurally by their leucine- Precise control of junD expression and JunD protein– zipper dimerization motif and basic DNA-binding protein interactions modulate tumor angiogenesis, cellular domain. They can either activate or repress transcription differentiation, proliferation and apoptosis. Molecular and this versatile functional activity is dependent on the and clinical knowledge of two decades has revealed specific components of the dimeric complex and the that precise JunD activity is elaborated by interrelated cellular environment (Eferl and Wagner, 2003; Hess layers of constitutive transcriptional control, complex et al., 2004). AP-1 figures prominently in transcriptional post-transcriptional regulation and a collection of regulation of early response genes (reviewed by Jochum post-translational modifications and protein–protein et al., 2001; Mechta-Grigoriou et al., 2001; Eferl and interactions. The stakes are high, as inappropriate JunD Wagner, 2003).
    [Show full text]
  • The REST/NRSF Pathway As a Central Mechanism in CNS Dysfunction
    The REST/NRSF Pathway as a Central Mechanism in CNS Dysfunction Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Alix Warburton April 2015 Disclaimer The data in this thesis is a result of my own work. The material collected for this thesis has not been presented, nor is currently being presented, either wholly or in part for any other degree or other qualification. All of the research, unless otherwise stated, was performed in the Department of Physiology and Department of Pharmacology, Institute of Translational Medicine, University of Liverpool. All other parties involved in the research presented here, and the nature of their contribution, are listed in the Acknowledgements section of this thesis. i Acknowledgements First and foremost, I would like to express my upmost gratitude to my primary and secondary supervisors Professor John Quinn (a.k.a Prof. Quinny) and Dr Jill Bubb for all of their support, guidance, wisdom (thank you Jill) and encouragement throughout my PhD; I could not have wished for a better pair. I am also extremely grateful to the BBSRC for funding my PhD project. I would also like to extend my thanks to Dr Graeme Sills for providing samples and assistance with my work on the SANAD epilepsy project, Dr Fabio Miyajima for offering his knowledge and knowhow on many occasions, Dr Gerome Breen for being a bioinformatics wizard and providing support on several projects, Dr Minyan Wang’s lab for their help and hospitality during my 3 month visit to Xi'an Jiaotong-Liverpool University, Dr Roshan Koron for assisting with the breast cancer study, Dr Chris Murgatroyd for his invaluable advice on ChIP and Professor Dan Rujescu’s lab for providing clinical samples and support with statistical analyses on the schizophrenia project.
    [Show full text]
  • Differential Gene Expression of Minnesota (MN) Hygienic Honeybees (Apis Mellifera) Performing Hygienic Behavior
    Minnesota State University, Mankato Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato All Graduate Theses, Dissertations, and Other Graduate Theses, Dissertations, and Other Capstone Projects Capstone Projects 2016 Differential Gene Expression of Minnesota (MN) Hygienic Honeybees (Apis mellifera) Performing Hygienic Behavior Eric Northrup Minnesota State University Mankato Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds Part of the Bioinformatics Commons, Entomology Commons, and the Genetics Commons Recommended Citation Northrup, E. (2016). Differential Gene Expression of Minnesota (MN) Hygienic Honeybees (Apis mellifera) Performing Hygienic Behavior [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/619/ This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. Differential gene expression of Minnesota (MN) Hygienic honeybees (Apis mellifera) performing hygienic behavior By Eric Northrup A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science In Biological Sciences Minnesota State University, Mankato Mankato, Minnesota April 2016 Differential gene expression of MN Hygienic honeybees (Apis mellifera) performing hygienic behavior Eric Northrup This thesis has been examined and approved by the following members of the student’s committee.
    [Show full text]
  • FLI1 Gene Fli-1 Proto-Oncogene, ETS Transcription Factor
    FLI1 gene Fli-1 proto-oncogene, ETS transcription factor Normal Function The FLI1 gene provides instructions for making the FLI protein, which controls the activity (transcription) of genes. Transcription is the first step in the process of producing proteins. The FLI protein is part of a group of related proteins, called the Ets family of transcription factors, that control transcription. The FLI protein attaches (binds) to certain regions of DNA and turns on (activates) the transcription of nearby genes. The proteins produced from these genes control many important cellular processes, such as cell growth and division (proliferation), maturation (differentiation), and survival. The FLI protein is found primarily in blood cells and is thought to regulate their development. Health Conditions Related to Genetic Changes Ewing sarcoma Mutations involving the FLI1 gene cause a type of cancerous tumor known as Ewing sarcoma. These tumors develop in bones or soft tissues such as nerves and cartilage. There are several types of Ewing sarcoma, including Ewing sarcoma of bone, extraosseous Ewing sarcoma, peripheral primitive neuroectodermal tumor, and Askin tumor. The mutations that cause these tumors are acquired during a person's lifetime and are present only in the tumor cells. This type of genetic change, called a somatic mutation, is not inherited. The most common mutation that causes Ewing sarcoma is a rearrangement (translocation) of genetic material between chromosome 11 and chromosome 22. This translocation, written as t(11;22), fuses part of the FLI1 gene on chromosome 11 with part of another gene called EWSR1 on chromosome 22, creating an EWSR1/FLI1 fusion gene.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • Watsonjn2018.Pdf (1.780Mb)
    UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support.
    [Show full text]