Quantifying the Impacts of Climate Change and Human Activities on Runoff in the Lancang River Basin Based on the Budyko Hypothesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Human Activities in the Wei River Basin on the Lower Yellow River, China
Pol. J. Environ. Stud. Vol. 26, No. 6 (2017), 2555-2565 DOI: 10.15244/pjoes/70629 ONLINE PUBLICATION DATE: 2017-08-31 Original Research Effects of Human Activities in the Wei River Basin on the Lower Yellow River, China Li He Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing Received: 15 March 2017 Accepted: 22 April 2017 Abstract Water and soil conservation practices in the Wei River Basin (WRB) may in��uence the Lower Wei River (LWR) itself and the Lower Yellow River (LYR), of which the Wei is a tributary. Based on data of measured and natural runoff and suspended sediment load (SSL) in the WRB, the connections between runoff and SSL from the WRB and deposition in the LWR, the elevation of Tonggguan Hydrology Station, and deposition in the LYR are analyzed. For the compound effects of human activity and climate change in the WRB, the amount of deposition reduction in the LWR during 2000-2009 is about three times what it decreased dur- ing 1970-1979. For per square kilometers of soil conservation, the effect of human activities in the WRB on deposition in the LWR during period of 2000-09 is about four times that of the period of 1970-1979. As decreased runoff and SSL from the WRB, deposition in the LYR decreased during the periods of 1970-1979 and 1990-1999, while deposition in the LYR increased during the periods of 1980-1989 and 2000-2009. For the planned reservoir in the Jing River Basin, the decreased deposition in the LYR may be smaller than that of the LWR. -
Analysis of Socio-Hydrological Evolution Processes Based on a Modeling Approach in the Upper Reaches of the Han River in China
water Article Analysis of Socio-Hydrological Evolution Processes Based on a Modeling Approach in the Upper Reaches of the Han River in China Xiaoyu Zhao 1, Dengfeng Liu 1,* , Xiu Wei 1,2, Lan Ma 1, Mu Lin 3, Xianmeng Meng 4 and Qiang Huang 1 1 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China; [email protected] (X.Z.); [email protected] (X.W.); [email protected] (L.M.); [email protected] (Q.H.) 2 Hydrology and Water Resources Bureau of Henan, Yellow River Conservancy Commission, Zhengzhou 450000, China 3 School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China; [email protected] 4 School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; [email protected] * Correspondence: [email protected] Abstract: The Han River is the water source of the South-to-North Water Diversion Project and the “Han River to Wei River Water Diversion Project” in China. In order to ensure that the water quality and quantity are sufficient for the water diversion project, the natural forest protection project, river chief system and other measures have been implemented in the Han River by the government. Citation: Zhao, X.; Liu, D.; Wei, X.; At the same time, several large reservoirs have been built in the Han River basin and perform the Ma, L.; Lin, M.; Meng, X.; Huang, Q. functions of water supply and hydropower generation, which is an important type of clean power. -
The Comparison of Different Calculation Methods of Pollution Receiving Capacity for Jilin Province Huifa River
Nature Environment and Pollution Technology ISSN: 0972-6268 Vol. 15 No. 4 pp. 1169-1176 2016 An International Quarterly Scientific Journal Original Research Paper The Comparison of Different Calculation Methods of Pollution Receiving Capacity for Jilin Province Huifa River Yao Liwei and Men Baohui† Renewable Energy Institute, North China Electric Power University, Beijing-102206, China †Corresponding author: Men Baohui ABSTRACT Nat. Env. & Poll. Tech. Website: www.neptjournal.com Huifa River is the largest tributary of the Second Songhua River. Songhua River Basin is the concentrated area of Northeast Old Industrial Base, and it is also the distribution area of major cities, bearing Received: 19-12-2015 production task of national commodity grain. In recent years, with the rapid development of economy, Accepted: 28-01-2016 the deterioration of water quality is serious and the water environment problem is becoming more and Key Words: more outstanding, which have affected the sustainable development of the economic and social of Pollution receiving capacity Jilin province, so it is necessary to analyse and study the pollution receiving capacity of the river and Water quality model control the water pollution source to protect the water environment and strengthen water resources Sewage outfall protection. Based on one-dimensional water quality model, this paper use three kinds of different Huifa river generalization methods, such as midpoint generalization, uniform generalization and sewage outfall barycenter generalization, to calculate -
18.4 Water Pollution Treatment Measures and Suggestions
Environment Impact Report for Newly Built Jilin-Hunchun Rail Line Project Contents E2712 V4 7 ASSESSMENTS TO ENVIRONMENTAL VIBRATION IMPACT ....................................................................248 Public Disclosure Authorized 7.1 GENERAL ...............................................................................................................................................................248 7.1.1 Assessment standard......................................................................................................................................248 7.1.2 Analysis to major vibration sources ..............................................................................................................248 7.2 ASSESSMENT TO PRESENT STATUS OF ENVIRONMENTAL VIBRATION .....................................................................249 7.2.1 Introduction to present status of Environmental vibration ............................................................................249 7.2.2 Measurement of present status of Environmental vibration ..........................................................................249 7.2.3 Measurement results and analysis of present environmental vibration.........................................................250 7.3 ASSESSMENT TO ENVIRONMENTAL VIBRATION FORECAST.....................................................................................250 7.3.1 Forecast method ............................................................................................................................................250 -
Comprehensive Evaluation of Water Resources Carrying Capacity in the Han River Basin
water Article Comprehensive Evaluation of Water Resources Carrying Capacity in the Han River Basin Lele Deng 1, Jiabo Yin 1,2, Jing Tian 1, Qianxun Li 1 and Shenglian Guo 1,* 1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; [email protected] (L.D.); [email protected] (J.Y.); [email protected] (J.T.); [email protected] (Q.L.) 2 Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430074, China * Correspondence: [email protected] Abstract: As one of the most crucial indices of sustainable development and water security, water resources carrying capacity (WRCC) has been a pivotal and hot-button issue in water resources planning and management. Quantifying WRCC can provide useful references on optimizing water resources allocation and guiding sustainable development. In this study, the WRCCs in both current and future periods were systematically quantified using set pair analysis (SPA), which was formulated to represent carrying grade and explore carrying mechanism. The Soil and Water Assessment Tool (SWAT) model, along with water resources development and utilization model, was employed to project future water resources scenarios. The proposed framework was tested on a case study of China’s Han River basin. A comprehensive evaluation index system across water resources, social economy, and ecological environment was established to assess the WRCC. During the current period, the WRCC first decreased and then increased, and the water resources subsystem performed best, while the eco-environment subsystem achieved inferior WRCC. The SWAT model projected that the amount of the total water resources will reach about 56.9 billion m3 in 2035s, and the water resources development and utilization model projected a rise of water consumption. -
Taking Stock of Integrated River Basin Management in China Wang Yi, Li
Taking Stock of Integrated River Basin Management in China Wang Yi, Li Lifeng Wang Xuejun, Yu Xiubo, Wang Yahua SCIENCE PRESS Beijing, China 2007 ISBN 978-7-03-020439-4 Acknowledgements Implementing integrated river basin management (IRBM) requires complex and systematic efforts over the long term. Although experts, scientists and officials, with backgrounds in different disciplines and working at various national or local levels, are in broad agreement concerning IRBM, many constraints on its implementation remain, particularly in China - a country with thousands of years of water management history, now developing at great pace and faced with a severe water crisis. Successful implementation demands good coordination among various stakeholders and their active and innovative participation. The problems confronted in the general advance of IRBM also pose great challenges to this particular project. Certainly, the successes during implementation of the project subsequent to its launch on 11 April 2007, and the finalization of a series of research reports on The Taking Stockof IRBM in China would not have been possible without the combined efforts and fruitful collaboration of all involved. We wish to express our heartfelt gratitude to each and every one of them. We should first thank Professor and President Chen Yiyu of the National Natural Science Foundation of China, who gave his valuable time and shared valuable knowledge when chairing the work meeting which set out guidelines for research objectives, and also during discussions of the main conclusions of the report. It is with his leadership and kind support that this project came to a successful conclusion. We are grateful to Professor Fu Bojie, Dr. -
PDF Download
SCIENCE ADVANCES | RESEARCH ARTICLE AGRICULTURE Copyright © 2019 The Authors, some rights reserved; Discontinuous spread of millet agriculture in eastern exclusive licensee American Association Asia and prehistoric population dynamics for the Advancement C. Leipe1,2*, T. Long3, E. A. Sergusheva4, M. Wagner5*, P. E. Tarasov2 of Science. No claim to original U.S. Government Works. Distributed Although broomcorn and foxtail millet are among the earliest staple crop domesticates, their spread and impacts under a Creative on demography remain controversial, mainly because of the use of indirect evidence. Bayesian modeling applied Commons Attribution to a dataset of new and published radiocarbon dates derived from domesticated millet grains suggests that after NonCommercial their initial cultivation in the crescent around the Bohai Sea ca. 5800 BCE, the crops spread discontinuously across License 4.0 (CC BY-NC). eastern Asia. Our findings on the spread of millet that intensified during the fourth millennium BCE coincide with published dates of the expansion of the Sino-Tibetan languages from the Yellow River basin. In northern China, the spread of millet-based agriculture supported a quasi-exponential population growth from 6000 to 2000 BCE. While growth continued in northeastern China after 2000 BCE, the Upper/Middle Yellow River experienced decline. We propose that this pattern of regional divergence is mainly the result of internal and external anthro- Downloaded from pogenic factors. INTRODUCTION Studies based on phytolith (6) and starch grain (7) analyses claim Broomcorn (Panicum miliaceum) and foxtail (Setaria italica) millet, a much earlier appearance at, respectively, ca. 8500 to 7500 BCE often summarized as the East Asian millet cultigens, are two of the (broomcorn millet) and 9500 BCE (foxtail millet) within the Lower http://advances.sciencemag.org/ world’s oldest crops. -
Random River: Trade and Rent Extraction in Imperial China
Random river: Trade and rent extraction in imperial China Marlon Seror * December 2020 Abstract This paper exploits changes in the course of the Yellow River in China to isolate exogenous variation in the natural distribution of economic centers across space and over 2,000 years. Using original data on population and taxation from dynastic histories and local gazetteers, I assess the effect of market access on population density and resource extraction. I find that the changes in connectedness have two opposite effects. First, they induce a very large increase in the level and concentration of economic activity in the short run. Second, they trigger a large increase in taxation per capita and an elite flight, which reverse the concentration effect in the longer run. *Universit´edu Qu´ebec `aMontr´eal,IRD{DIAL, [email protected]. I thank James Fenske, Pei Gao, Stephan Heblich, Cl´ement Imbert, Ruixue Jia, Christian Lamouroux, Yu-Hsiang Lei, David Serfass, Lingwei Wu, Yu Zheng, Yanos Zylberberg, and seminar participants in Bristol and at the 2019 India-China Conference in Warwick for helpful comments and suggestions. The usual disclaimer applies. 1 Introduction As the economy grows, economic activity becomes increasingly concentrated in few cities. This process can be thought of as a consequence of economies of scale and ag- glomeration economies, and thus as conducive to economic development (Kim, 1995; Henderson et al., 2001). However, our understanding of agglomeration economies may be limited by the literature's focus on short-term economic effects, keeping po- litical structures constant. This paper uses data covering 2,000 years to study the very long run, as political structures react. -
A Study on Limit Velocity and Its Mechanism and Implications for Alluvial Rivers
International Journal of Sediment Research 31 (2016) 205–211 Contents lists available at ScienceDirect International Journal of Sediment Research journal homepage: www.elsevier.com/locate/ijsrc Original Research A study on limit velocity and its mechanism and implications for alluvial rivers Yanhong Jia a, Zhaoyin Wang b,n, Xiangmin Zheng a, Yanfu Li c a East China Normal University, Shanghai 200241, China b State Key Laboratory of Hydroscience and Engineering of Tsinghua University, Beijing 100084, China c Nanjing Hydraulic Research Institute, Nanjing 210029, China article info abstract Article history: Observations from field investigations showed that flow velocity greater than 3 m/s rarely occurs in Received 29 October 2014 nature, and high flow velocity stresses the bio-community and causes instability to the channel. For Received in revised form alluvial rivers without strong human disturbance, the flow velocity varies within a limited range, gen- 5 January 2015 erally below 3 m/s, while the discharge and wet area may vary in a range of several orders. This phe- Accepted 20 January 2015 nomenon was studied by analyzing hydrological data, including daily average discharge, stage, cross Available online 3 August 2015 sections, and sediment concentration, collected from 25 stations on 20 rivers in China, including the Keywords: Yangtze, Yellow, Songhua, Yalu, Daling, and Liaohe Rivers. The cross-sectional average velocity was cal- Limit velocity culated from the discharge and wet area using the continuity equation. For alluvial rivers, the wet cross Alluvial river section may self-adjust in accordance with the varying flow discharge so that the flow velocity does not Self-adjustment exceed a limit value. -
Kim Il Sung Reminiscences with the Century Vol. V
Kim Il Sung Reminiscences With the Century Vol. V A Aan-ri, (V) 438 Advance Association, (V) 255 Africa, (V) 272 Amnok River, (V) 52, 83, 84, 88, 92, 131, 135, 144, 151, 163, 185, 190, 196, 197, 202, 210, 259, 260, 310, 311, 312, 314, 315, 319, 323, 336, 438, 441, 447 Riverine Road, (V) 102 Amur River, (V) 72, 445 An Chang Ho, (V) 252 An Chung Gun, (V) 349, 366 An Jong Suk, (V) 216, 216 An Kwang Chon, (V) 249, 252 An Tok Hun, (V) 191, 320, 321, 322 An Yong Ae, (V) 79 Anti-Communism, (V) 105, 272, 355 Anti-Factionalism (poem), (V) 237 Anti-Feudalism, (V) 375, 380 Anti-Imperialist Youth League, (V) 221, 267, 430 Anti-Japanese, (V) 3, 3, 7, 8, 10, 15, 16, 17, 18, 19, 23, 26, 27, 28, 31, 33, 34, 35, 37, 38, 39, 40, 41, 47, 51, 52, 56, 57, 58, 59, 60, 64, 65, 70, 75, 79, 82, 83,85, 92, 96, 103, 105, 108, 111, 114, 115, 122, 124, 126, 132, 133, 134, 135, 137, 139, 140, 142, 143, 144, 147, 148, 156, 157, 163, 165, 170, 174, 181, 182, 183, 185, 186, 187, 192, 193, 200, 204, 205, 207, 208, 221, 227, 231, 232, 233, 234, 239, 240, 241, 245, 250, 251, 255, 261, 263, 264, 265, 270, 271, 275, 279, 281, 282, 285, 294, 295, 298, 301, 304, 305, 309, 310, 312, 313, 322, 328, 334, 346, 348, 349, 350, 351, 353, 363, 377, 382, 384, 387, 388, 390, 392, 396, 405, 407, 421, 436, 445 Allied Army, (V) 202, 263 Association, (V) 26, 30, 209, 255, 305 Guerrilla Army of Northern Korea, (V) 306, 307 Youth Daily, (V) 228 Youth League, (V) 189, 244, 434 Anti-Manchukuo, (V) 148, 315 Anti-Soviet, (V) 274 Antu, (V) 4, 42, 47, 48, 76, 133, 138, 210, 216, 216, 325 Appeal -
Identification of Cultural Landscape Factors for Sustainable Development: a Case Study of Traditional Villages in Changbai Mountain Area
IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Identification of Cultural Landscape Factors for Sustainable Development: A Case Study of Traditional Villages in Changbai Mountain Area To cite this article: Qunsong Zhang et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 495 012045 View the article online for updates and enhancements. This content was downloaded from IP address 150.65.65.118 on 27/08/2020 at 06:33 4th International Conference on Environmental and Energy Engineering (IC3E 2020) IOP Publishing IOP Conf. Series: Earth and Environmental Science 495 (2020) 012045 doi:10.1088/1755-1315/495/1/012045 Identification of Cultural Landscape Factors for Sustainable Development: A Case Study of Traditional Villages in Changbai Mountain Area Qunsong Zhang1,2 *, Eunyoung Kim1, Cuixia Yang2 and Fucun Cao2 1Japan Advanced Institute of Science and Technology,1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan 2 Landscape Architecture, School of Art & Design, Dalian Polytechnic University, No. 1st Qinggongyuan, Ganjingzi, Dalian, Liaoning, China, P.C. 116034 *[email protected] Abstract. Cultural Landscape (CL) is a variety of manifestations of interaction between human beings and their natural environment. CL is the internal power of sustainable development(SD) and has a significant link with the development cycle system. As a carrier of living cultural heritage, traditional villages embody the regional CL formed under the comprehensive effects of natural resources, humanity history, architectural aesthetics, the integration of ethnic groups and production methods, and the symbiosis between human beings and the environment. This paper aims to study a method to identify CL factors of traditional villages based on the elements of SD in the aspects of environment, economy, society, peace and security. -
Electronic Supplementary Material (ESI) for RSC Advances. This Journal Is © the Royal Society of Chemistry 2021
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021 Table S1 The sampling sites in the Songhua River Sites label Longitude (°E) Latitude(°N) The name of the section Waterbody River Basin Normal season Dry season Common site The Menlo River Bridge Menlu River NR NS1 - 123.509 49.663 Colo River Bridge Keluo River NR NS2 NM2 N2 125.452 49.406 The middle reaches of the Namur River Namoer River NR NS3 - 126.111 48.541 The middle reaches of Wuyuer River Wuyuer River NR NS4 NM4 N4 125.892 48.004 Bohuotou Main stream of Nenjiang River NR NS5 NM5 N5 125.184 49.192 Laha Main stream of Nenjiang River NR NS6 - 124.56 48.248 Liuyuan Main stream of Nenjiang River NR NS7 - 123.919 47.379 Jiangqiao Main stream of Nenjiang River NR NS8 NM8 N8 123.701 46.701 The middle reaches of Liu River Yitong River SSR DS1 DM1 D1 126.845 43.113 Wanjin tower Yinma River SSR DS2 DM2 D2 125.445 44.603 Kaoshgannan tower Huifa River SSR DS3 - 125.682 44.786 Xilankou Main stream of Second Songhua River SSR DS4 - 126.294 44.177 Songhua River village Main stream of Second Songhua River SSR DS5 - 126.189 44.671 Songlin Main stream of Second Songhua River SSR DS6 DM6 D6 124.728 45.301 The middle reaches of Laling River Lalin River MSSR SS1 SM1 S1 127.064 44.671 The middle reaches of Ashe River Ashi River MSSR SS2 SM2 S2 127.013 45.409 Tielishi Hulan River MSSR SS3 - 128.602 47.034 The middle reaches of Hulan River Hulan River MSSR SS4 - 127.337 46.892 Dashan Mudan River MSSR SS5 - 128.737 43.756 Guoshuchang Mudan River