The Biologic and Economic Assessment of Toxaphene

Total Page:16

File Type:pdf, Size:1020Kb

The Biologic and Economic Assessment of Toxaphene I ~ 12.8 ~11k§, 1.0 ~ Eli 1.0 IiiW .2 Ii.i a.:.: ~ w ~ &<.... "" ... ~ 1.1 ..... ~ 1.1 --- I . III" 1.2~ 111/11.4 111111.6 111111.25 1/1/11.4 111111.6 • I MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A NATIONAL BUREAU OF STANDARDS-I%3-A '. COOPERATIVE IMPACT ASSESSMENT REPORT THE BIOLOGIC AND ECONOMIC ASSESSMENT OF TOXAPHENE ~ c:r: 0::: co ::; ..,­ '-' CD ::; 0) co ::::; CL 0 f3 C\1 -J -l ~ ::::> z: -:; c:::c tr) 0 -J UNITED STATES IN COOPERA T/ON WITH TECHNICAL BULLETIN DEPARTMENT OF STATE AGRICULTURAL EXPERIMENT STATIONS NUMBER 1652 AGRICULTURE COOPERATIVE EXTENSION SERVICE OTHER STATE AGENCIES U.S. ENVIRONMENTAL PROTECTION AGENCY THE BIOLOGIC AND ECONOMIC ASSESSMENT OF TOXAPHENE A report of the Toxaphene assessment team to the rebuttable presumption against registration of Toxaphene Submitted to the Environmental Protection Agency on Seotember 12, 1977 and November 30, 1978 UNITED STATES IN COOPERA TlON WITH TECHNiCAL BUllETIN DEPARTMENT OF STATE ACRICULTURAL EXPERIMENT STATIONS NUMBER 1652 AGRICULTURE COOPERATIVE EXTENSION SERVICE OTHER STATE AGENCIES U.S. ENVIRONMENTAL PROTECTION AGENCY PREFACE This report is a joint project of the U.S. Department of Agriculture, the State Land-Grant Universities, and the U.S. Environmental Protection Agency, and is the seventh in a series of reports recently prepared by a team of scientists from these m.'ganizations in order to provide sound, current scientific information on the benefits of, and exposure to, toxaphene. The report is a scientific presentation to be used in connection with other data as a portion of the total body of knowledge in a final benefit/risk assessment under the Rebuttable Presumption Against Registration Process in connection with the Federal Insecticide, Fungicide, and Rodenticide Act. This report is a slightly edited version of the two reports submitted to the Environmental Protection Agency on September 12, 1977 and November 30, 1978. The editing has been limited in order to maintain the accuracy of the information in the original reports. Sincere appreciation is extended to the Assessment Team Members and to all others who gave so generously of their time in the development of information and in the preparation of the report. Toxaphene Assessment Team Paul W. Bergman Entomologist USDA, SEA, ES Washington, D. C. Alexander C. Davis Entomologist Cornell University Geneva, New York Walter L. Ferguson Economist USDA, ESS Washington, D. C. Stanford N. Fertig Chief, Pesticide Impact USDA, SEA, AR Assessment Staff Beltsville, Maryland Frederick W. Honing Entomologist USDA, FS Washington, D. C. Richard L. Ridgway National Research USDA. SEA, AR Program Leader Beltsville. Maryland Robert C. Riley Entomologist USDA. SEA. CR Washington, D. C. Glen O. Schubert Veterinarian USDA, APHIS Hyattsville. Maryland Paul H. Schwartz. Jr. Team Leader. USDA, SEA, AR National Research Beltsville. Maryland Program Leader Issued June 1981 ii Norman H. Starler Economist USDA, ES S (formerly) Washington, D. C. Harrie .M. Taft, Jr. Entomologist USDA, SEA, AR (deceased) Florence, South Carolina ACKNOWLEDGMENTS Appreciation is expressed to the following for their assistance in providing information on the uses of toxaphene, acr.eage treated, production costs, comparative efficiency of toxaphene and available alternative insecticides, the losses associated with inadequate control of the various insect pests, and other related information. U. S. Department of Agriculture SEA, AR: B. A. Butt, F. P. Cuthbert, Jr. ESS: H. W. Delvo, W. A. Quinby C. R. Gentry, R. L. Harris J. C. Tinney P. C. Kearney, J. A. Onsager C. R. Parencia, A. W. Taylor FS: R. Stewart U. S. Environmental Protection Agency OPP: M. Dow, G. O'Mal'a, J. Palmisano, M. McWhorter State Coordinators Alabama: F. Gilliland Montana: G. Jensen Arizona: L. Moore Nebraska: E. A. Dickason Arkansas: G. Barnes Nevada: H. G. Smith J. G. Burleigh New Hampshire: J. S. Bowman California: E. Swift' G. T. Fisher Connecticut: M. G. Savos New Mexico: E. Huddleston Delaware: W. E. McDaniel New York: A. A. Muka Georgia: W. R. Lambert III North Carolina: R. L. Robertson B. P. Singh North Dakota: J. T. Schulz Hawaii: J. Hylin Ohio: R. E. Treece Idaho: G. P. Carpenter Oklahoma: S. Coppock Illinois: S. Moore III K. We Hawxby Indiana: D. Matthew Oregon: J. Capizzi Iowa: H. J. Stockdale Pennsylvania: S. G. Gesell Kansas: L. Brooks Rhode Island: L. Pearson Louisiana: J. L. Bagent South Carolina: J. C. French J. S. Roussel South Dakota: B. H. Kantack Maine; J. B. Dimond Tennessee: C. J. Southards Maryland: W. C. Harding, Jr. Vermont: G. B. MacCollou Michigan: N. Fe Sloan Virginia: N. E. Lau Minnesota: L. K. Cutkomp Washington: R. Maxwell J. A. Lofgren West Virginia: J. F. Baniecki Mississippi: D. F. Young, Jr. D. O. Quinn Missouri: M. L. Fairchild Wisconsin: E. H. Fisher Wyoming: E. W. Spackman iii SUMMARY Toxaphene has been used as a pesticide since 1947, and has 277 commodity and other site registrations. About 33 million pounds are currently used on about 4.9 million acres of crops and about 17 million head of beef cattle. State and Federal agencies recommend or use toxaphene for control of 167 insect pests on 44 com­ modities, 40 of which have no equally effective and safe alternative in one or more States. The need for toxaphene on the remaining commodities is considered useful. Toxaphene + methyl parathion used on cotton increases the interval between applica­ tions by about 2 days. When methyl parathion is used alone, it must be applied every 3 to 5 days. Toxaphene is one of the least toxic of the insecticides to honeybees and other pollinating insects of crops. Literature relating to the impact of toxaphene on the biological and physical environments was reviewed and interpreted. We attempted to determine the rates at which toxaphene is moving into the physical environment and disappearing from it. This information is critical for an assessment of biological effect. Volatilization represents a major pathway by which toxaphene moves into the air from water and soil. Toxaphene volatilizes from water rapidly. Our studies show that it probably has a half-life of less than 2 min in the surface layer of water. The rate at which it moves to the surface layer of water is controlled by several factors, including rate of diffusion and rate of desorption. Our studies showed that most of the toxaphene disappeared rapidly from lakes; however, a very small amount remained in the lake for a fairly long period of time. Toxaphene enters water primarily through surface runoff. Sediment carries al­ most all of the toxaphene in the surface runoff. It is possible to measure toxaphene yields of runoff in sediment and to obtain rough estimates of the time that it takes for toxaphene concentrations to be reduced to biologically inactive levels once the sediment contaminated with toxaphene is introduced into the water. These time periods are usually relatively short, varying from a few days to a few months depending upon the size of the surface area of the body of water, the organic matter in the water, the sediment load, and the toxaphene conce!1tration in the sediment. Toxaphene evaporates readily from the surface of soil providing the surface of the soil is not dry. The process of volatilization is almost stopped if the soil is cultivated or if the toxaphene is mixed with the soil. Toxaphene will undergo anaer­ obic degradation in the soil, however, which is extensive if the soil is high in humus or organic matter. Toxaphene is probably present in the air for only a short period of time. The half-life of a compound like toxaphene is apt to be very short--probably less than a day--in the air. It is degraded by complex chemical reactions consisting primarily of photochemical oxidation. Toxaphene undergoes little bioaccumulation in the envi­ ronment. It does not bioaccumulate in birds that eat fish; however, the greatest bioaccumulation occurs when fish are exposed to water containing toxaphene. Such bioaccumulation rates are generally less than 10,000. The results of the National Pesticide Monitoring Program, initiated in June 1967, showed that toxaphene residues rarely occurred in the samples checked. It is found far less frequently than persistent chlorinated hydrocarbon insecticides. iv Toxaphene occurred about 9 times per 1,000 samples for the period 1966-74 in the total diet study, whereas dieldrin was found with a frequency of 258 times per 1,000 samples and DDT 150 times per 1,000 samples. Toxaphene was used more heavily on agricultural crop lands than was dieldrin or DDT. When toxaphene was fed to cattle and sheep at 100 p/m for 16 weeks, the con­ centrations in sheep remained at approximately the same level during each week through the 16th week. Concentrations increased blightly each week in the body fat of cattle. In both species, residue levels were dependent upon concentrations in the diet. When toxaphene was eliminated from the diet, it was rapidly excreted from the body. Toxaphene residues in the fat declined rapidly at first and then slowly tapered off and returned to near zero levels within 8 weeks after toxaphene was discontinued in the feed. This indicated that toxaphene was readily metabolized in the body and excreted. Toxaphene apparently undergoes extensive dechlorination. In the dechlorination of toxaphene in rats, the only identified metabolite was the chloride ion, which appears almost entirely in the urine and accounted for about half of the admin­ istered dose. About 50 percent of the chloride ion in both toxaphene and table salt was eliminated from the body in about 2 to 3 days. The extensive metabolic dechlorination of toxaphene in rats differs from that of many chlorinated hydrocarbon insecticides and environmental pollutants.
Recommended publications
  • Ri Wkh% Lrorjlfdo (Iihfwv Ri 6Hohfwhg &Rqvwlwxhqwv
    Guidelines for Interpretation of the Biological Effects of Selected Constituents in Biota, Water, and Sediment November 1998 NIATIONAL RRIGATION WQATER UALITY P ROGRAM INFORMATION REPORT No. 3 United States Department of the Interior Bureau of Reclamation Fish and Wildlife Service Geological Survey Bureau of Indian Affairs 8QLWHG6WDWHV'HSDUWPHQWRI WKH,QWHULRU 1DWLRQDO,UULJDWLRQ:DWHU 4XDOLW\3URJUDP LQIRUPDWLRQUHSRUWQR *XLGHOLQHVIRU,QWHUSUHWDWLRQ RIWKH%LRORJLFDO(IIHFWVRI 6HOHFWHG&RQVWLWXHQWVLQ %LRWD:DWHUDQG6HGLPHQW 3DUWLFLSDWLQJ$JHQFLHV %XUHDXRI5HFODPDWLRQ 86)LVKDQG:LOGOLIH6HUYLFH 86*HRORJLFDO6XUYH\ %XUHDXRI,QGLDQ$IIDLUV 1RYHPEHU 81,7('67$7(6'(3$570(172)7+(,17(5,25 %58&(%$%%,776HFUHWDU\ $Q\XVHRIILUPWUDGHRUEUDQGQDPHVLQWKLVUHSRUWLVIRU LGHQWLILFDWLRQSXUSRVHVRQO\DQGGRHVQRWFRQVWLWXWHHQGRUVHPHQW E\WKH1DWLRQDO,UULJDWLRQ:DWHU4XDOLW\3URJUDP 7RUHTXHVWFRSLHVRIWKLVUHSRUWRUDGGLWLRQDOLQIRUPDWLRQFRQWDFW 0DQDJHU1,:43 ' %XUHDXRI5HFODPDWLRQ 32%R[ 'HQYHU&2 2UYLVLWWKH1,:43ZHEVLWHDW KWWSZZZXVEUJRYQLZTS Introduction The guidelines, criteria, and other information in The Limitations of This Volume this volume were originally compiled for use by personnel conducting studies for the It is important to note five limitations on the Department of the Interior's National Irrigation material presented here: Water Quality Program (NIWQP). The purpose of these studies is to identify and address (1) Out of the hundreds of substances known irrigation-induced water quality and to affect wetlands and water bodies, this contamination problems associated with any of volume focuses on only nine constituents or the Department's water projects in the Western properties commonly identified during States. When NIWQP scientists submit NIWQP studies in the Western United samples of water, soil, sediment, eggs, or animal States—salinity, DDT, and the trace tissue for chemical analysis, they face a elements arsenic, boron, copper, mercury, challenge in determining the sig-nificance of the molybdenum, selenium, and zinc.
    [Show full text]
  • Carbamate Pesticides Aldicarb Aldicarb Sulfoxide Aldicarb Sulfone
    Connecticut General Statutes Sec 19a-29a requires the Commissioner of Public Health to annually publish a list setting forth all analytes and matrices for which certification for testing is required. Connecticut ELCP Drinking Water Analytes Revised 05/31/2018 Microbiology Total Coliforms Fecal Coliforms/ E. Coli Carbamate Pesticides Legionella Aldicarb Cryptosporidium Aldicarb Sulfoxide Giardia Aldicarb Sulfone Carbaryl Physicals Carbofuran Turbidity 3-Hydroxycarbofuran pH Methomyl Conductivity Oxamyl (Vydate) Minerals Chlorinated Herbicides Alkalinity, as CaCO3 2,4-D Bromide Dalapon Chloride Dicamba Chlorine, free residual Dinoseb Chlorine, total residual Endothall Fluoride Picloram Hardness, Calcium as Pentachlorophenol CaCO3 Hardness, Total as CaCO3 Silica Chlorinated Pesticides/PCB's Sulfate Aldrin Chlordane (Technical) Nutrients Dieldrin Endrin Ammonia Heptachlor Nitrate Heptachlor Epoxide Nitrite Lindane (gamma-BHC) o-Phosphate Metolachlor Total Phosphorus Methoxychlor PCB's (individual aroclors) Note 1 PCB's (as decachlorobiphenyl) Note 1 Demands Toxaphene TOC Nitrogen-Phosphorus Compounds Alachlor Metals Atrazine Aluminum Butachlor Antimony Diquat Arsenic Glyphosate Barium Metribuzin Beryllium Paraquat Boron Propachlor Cadmium Simazine Calcium Chromium Copper SVOC's Iron Benzo(a)pyrene Lead bis-(2-ethylhexyl)phthalate Magnesium bis-(ethylhexyl)adipate Manganese Hexachlorobenzene Mercury Hexachlorocyclopentadiene Molybdenum Nickel Potassium Miscellaneous Organics Selenium Dibromochloropropane (DBCP) Silver Ethylene Dibromide (EDB)
    [Show full text]
  • CHEMICALS of PUBLIC HEALTH CONCERN and Their Management in the African Region
    H H C Hg H N C OH O O HO OH OH CHEMICALS OF PUBLIC HEALTH CONCERN and their management in the African Region REGIONAL ASSESSMENT REPORT 4 JULY 2014 AFRO LIBRARY CATALOGUING-IN-PUBLICATION DATA Chemicals of public health concern in the African Region and their management: Regional Assessment Report 1. Chemically-Induced Disorders – prevention & control 2. Environmental Exposure 3. Polluants environnemental – adverse effects – toxicity 4. Hazardous Substances 5. Risk Management 6. Health Impact Assessment I. World Health Organization. Regional Office for Africa II.Title ISBN: 978-929023281-0 (NLM Classification:QZ 59) © WHO REGIONAL OFFICE FOR AFRICA, 2014 Publications of the World Health Organization enjoy The mention of specific companies or of certain copyright protection in accordance with the provisions manufacturers’ products does not imply that they of Protocol 2 of the Universal Copyright Convention. are endorsed or recommended by the World Health All rights reserved. Copies of this publication may be Organization in preference to others of a similar nature obtained from the Library, WHO Regional Office for that are not mentioned. Errors and omissions excepted, Africa, P.O. Box 6, Brazzaville, Republic of Congo (Tel: the names of proprietary products are distinguished by +47 241 39100; +242 06 5081114; Fax: +47 241 initial capital letters. 39501; E-mail: [email protected]). Requests for permission to reproduce or translate this publication All reasonable precautions have been taken by the – whether for sale or for non-commercial distribution – World Health Organization to verify the information should be sent to the same address. contained in this publication.
    [Show full text]
  • The Calcium Arsenates
    Station RuIletin 131. June, 1918 Oregon Agricultural College Experiment Station AGRICULTURAL CHEMISTRY DEPARTMENT The Calcium Arsenates By R. H. ROBINSON Acting Chemist, Oregon Agricultural Experiment Station. CORVALLIS, OREGON The regular huIlejne of the Station are sent free to the residents of Oregon who request them. THE CALCIUM ARSENATES By R. H. ROBINSON Acting Chemist, Oregon Agricultural Experiment Station INTRODUCTION Chemical investigations on the calcium arsenates relative to their economfic value and practicability as insecticides have been carried on by the department of Agricultural Chemistry of this Station during the past two years.The results obtained from these investigations are presented in this bulletin.The work was supported by the annual funds provided by the Adams Act of the United States Government.. Commercial calcium arsenate is an arsenical now being produced by reliable manufacturers of spray material and offered for sale as a sub- stitute for the arsenates of lead.The value of the latter as a stomachic insecticide has been demonstrated, and itis now used extensively for the successful controlof the codling moth, the destructionof the cotton boll worm., the tobacco worm, and the Colorado potato beetle. Previous inveatigations on the toxic values and killing power of calcium arsenate and lead arsenate indicate equal efficiency. A consideration of a few figures will show the economic advantages which might be gained if calcium arsenate could be substituted for lead arsenate.A conservative estimate of the quantity of lead arsenate used annually in the United States, as stated by one of the largest manufac- turers of spray materials, is probably more than 30,000,000 pounds.
    [Show full text]
  • P-Listed Hazardous Wastes
    P-Listed Hazardous Wastes The Environmental Protection Agency (EPA) has identified a number of chemicals on the EPA “P-list” that present an especially acute hazard when disposed of as hazardous waste. Because of their acute hazards, there are more stringent requirements when disposing of these wastes: ►Container size: When collecting p-listed chemicals as waste, the volume of the hazardous waste container must not exceed one quart (approximately one liter). ►Empty containers: Empty containers that held p-listed chemicals must also be disposed of as hazardous waste. They are not allowed to be washed or re-used. ►Contaminated materials: Disposable materials that become contaminated with p-listed chemicals (e.g. gloves, weighing boats, etc.) must also be disposed of as hazardous waste. Non-disposable materials must be “triple-rinsed”, or rinsed three times to remove the contamination. This rinsate must be collected as hazardous waste. Materials contaminated with p-listed chemicals may not be washed or re-used until they have been triple-rinsed. Remember: - Label the waste as hazardous waste. Most common p-listed wastes Just like all other hazardous wastes, p-listed Chemical CAS number wastes must be labeled with the words Acrolein 107–02–8 “hazardous waste”, the complete chemical Allyl alcohol 107–18–6 name, and the associated hazard Arsenic compounds Varies characteristics (e.g., ignitable, corrosive, Inorganic cyanide Varies toxic, or reactive). salts Carbon disulfide 75-15-0 - Use disposable materials whenever Cyanogen and 460-19-5, 506-77-4 possible. Triple-rising non-disposable Cyanogen Chloride material generates a lot of waste, which can 2,4-Dinitrophenol 51–28–5 be difficult to dispose of safely.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • The Insecticide Industry of Today Seed Production in Various States Has Comprises More Than 50 Basic Producers Doubled the Yield
    put nearly 2 million dollars extra in the growers' pockets. In Mississippi at least 75 percent of the 1950 cotton crop The Insecticide would have been destroyed were it not for the control of insects through the Industry use of the industry's products. Insecti- cides applied in Nebraska to control Lea S. Hitchner grasshoppers in 1949 resulted in savings estimated at 2 million dollars. Insecti- cidal treatment of alfalfa raised for The insecticide industry of today seed production in various States has comprises more than 50 basic producers doubled the yield. or manufacturers and more than 500 One factor among others responsible formulatorsj xemixers, and processors. for the high productivity of American From their plants throughout the coun- agriculture is the cooperative attack try comes a great variety of insecticides that is waged on insects and other pests. and related products. The agricultural chemicals industry The products, except those derived has welcomed the opportunity to co- from botanical sources, have their ori- operate with Federal and State agen- gins in the basic chemicals on which cies and with farm organizations in this the industry is founded, but the proc- important work and to carry the re- esses that turn the raw materials into sponsibility for developing, producing, the finished products applied by farm- and delivering the necessary pesticides. ers are long, highly scientific, and ex- Such a responsibility is a heavy one pensive in capital. investment and even in normal times. It becomes operating costs. acutely heavy in times of national The industry employs thousands of stress, when shortages of raw materials, scientists in the fields of entomology, containers, personnel, and transporta- plant pathology, botany, toxicology, tion may hamper production and dis- medicine, chemistry, and chemical en- tribution.
    [Show full text]
  • Proceedings of the Indiana Academy Of
    Preliminary Tests with Systemic Insecticides 1 George E. Gould, Purdue University A systemic insecticide is one that is absorbed by the plant and translocated in the sap so that parts of the plant other than those treated become toxic to sucking insects. This type of insecticidal action was demonstrated for selenium compounds by Gnadinger (1) and others as early as 1933. These compounds were never used extensively as quantities of the material dangerous to humans accumulated in sprayed plants or in plants grown in treated soils. Recently German chemists have developed a number of phosphorus compounds that show systemic action. In our tests three of these compounds have been tried in com- parison with three related phosphorus compounds for which no systemic action has been claimed. The development of these systemic and other phosphorus compounds have been based on the discoveries of the German chemist Schrader in 1942 (German patent 720,577). After World War II this information became available to the Allied Governments and soon numerous com- pounds were released for experimental purposes. At present three of the non-systemic compounds, parathion, hexaethyl tetraphosphate and tetraethyl pyrophosphate, are available commercially. The first of the systemics tested was C-1014, a formulation similar to Pestox 3 (octa- methylpyrophosphoramide) which has been used in England. The other two in our tests were Systox with its active ingredient belonging to a trialkyl thiophosphate group and Potasan, diethoxy thiophosphoric acid ester of 7-hydroxy-4-methyl coumarin. Two additional phosphorus com- pounds used in some tests included Metacide, a mixture containing 6.2% parathion and 24.5% of 0, O-dimethyl O-p-nitrophenyl thiophos- phate, and EPN 300, ethyl p-nitrophenyl thionobenzine phosphonate.
    [Show full text]
  • Site Investigation Report for the Cattlehead Cdv Site
    SITE INVESTIGATION REPORT FOR THE CATTLEHEAD CDV SITE United States Forest Service, Southern Region Ozark St. Francis National Forest Contract No. AG-43ZP-D-15-0007 Prepared for: U.S. Department of Agriculture United States Forest Service, Southern Region Atlanta, Georgia 30309 Prepared by: BMT Designers & Planners, Inc. 4401 Ford Avenue, Suite 1000 Alexandria, Virginia 22302 March 2019 TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................................................... 1 2. GENERAL BACKGROUND ................................................................................................................... 3 3. SITE LOCATION AND PHYSICAL SETTING ....................................................................................... 4 3.1. Site Location .................................................................................................................................. 4 3.2. Topography ................................................................................................................................... 4 3.3. Geology ......................................................................................................................................... 4 3.4. Hydrogeology ................................................................................................................................ 5 3.5. Surface Water ..............................................................................................................................
    [Show full text]
  • THE CHEMISTRY of PESTICIDES Walter R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Food and Drug Administration Papers U.S. Department of Health and Human Services 6-23-1969 THE CHEMISTRY OF PESTICIDES Walter R. Benson Food and Drug Administration Follow this and additional works at: http://digitalcommons.unl.edu/usfda Part of the Dietetics and Clinical Nutrition Commons, Health and Medical Administration Commons, Health Services Administration Commons, Pharmaceutical Preparations Commons, and the Pharmacy Administration, Policy and Regulation Commons Benson, Walter R., "THE CHEMISTRY OF PESTICIDES" (1969). Food and Drug Administration Papers. 12. http://digitalcommons.unl.edu/usfda/12 This Article is brought to you for free and open access by the U.S. Department of Health and Human Services at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Food and Drug Administration Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reproduced by the U. S. DEPARTME",T OF HEAL TI!, EDUCATION, AND WELFARE Fc·od and Drug Admilri.stration THE CHEMISTRY OF PESTICIDES Walter R. Benson Pesticide Branch, Division of Food Chemistry, Bureau of Science Food and Drug Administration, Washington, D. C. Reprinted from ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Volume 160, Article 1, Pages 7-29 June 23, 1969 THE CHEMISTRY OF PESTICIDES WaIter R. Benson Pesticide.f Brallch, DivisiO/l of Food Chemistr}" Bureall of Science "-ood and Drug Administration! Washingtoll, D. C. INTRODUCTION This review is limited to the structures ana a few reactions of the pesticides­ mainly in~ecticides-that affect mammalian systems and that are the subject of papers by other authors in this monograph.
    [Show full text]
  • European Corn Borer Control with Granular Formulations of Endrin, Heptachlor, and Toxaphene Mahlon Lowell Fairchild Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1959 European corn borer control with granular formulations of endrin, heptachlor, and toxaphene Mahlon Lowell Fairchild Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Fairchild, Mahlon Lowell, "European corn borer control with granular formulations of endrin, heptachlor, and toxaphene " (1959). Retrospective Theses and Dissertations. 2152. https://lib.dr.iastate.edu/rtd/2152 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. EUROPEAN CORN BORER CONTROL WITH GRANULAR FORMULATIONS OF ENDRIN, HEPTACHLOR, AND TOXAPHENE by MaliIon Lowell Fairchild A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Entomology Approved: Signature was redacted for privacy. Signature was redacted for privacy. Heati of Major department Signature was redacted for privacy. Iowa State Col 1ege Ames, Iowa 1959 I I TABLE OF CONTENTS INTRODUCTION REVIEW OF LITERATURE METHODS AND PROCEDURE DISCUSSION AND RESULTS SUMMARY AND CONCLUSIONS LITERATURE CITED ACKNOWLEDGMENTS APPENDIX ] INTRODUCTION The European corn borer (Pyrausta nubi la 1 is (libn. ) ) was first re­ ported in this country by VinaI (1917). He suggested that it might have been imported in broomcorn from Europe. Since then it has moved west­ ward and southward until now it covers a major part of the corn growing area in the United States and Canada and has become one of the major economic pests on corn.
    [Show full text]
  • Florida Pesticide Reporting Guidelines
    Florida Pesticide Reporting guidelines This list is compiled from the Environmental Protection Agency List of Lists (2015) and updated with common Pesticide Trade Names. This is meant as a supplement to the EPA list of lists to clarify and assist handlers and responders in the field to Florida reporting requirements and the more common chemical nomenclature. Threshold Planning Quantity (TPQ) – The presence of Extremely Hazardous Substances (EHSs) in quantities at or above the Threshold Planning Quantity (TPQ) requires certain emergency planning activities to be conducted. The consolidated list presents the TPQ (in pounds) for section 302 chemicals in the column following the CAS number. For chemicals that are solids, there are two TPQs given (e.g., 500/10,000). In these cases, the lower quantity applies for solids in powder form with particle size less than 100 microns, or if the substance is in solution or in molten form. Otherwise, the 10,000 pound TPQ applies. Section 304 RQ‐ Facilities must immediately report accidental releases of EHS chemicals and "hazardous substances" in quantities greater than corresponding Reportable Quantities (RQs) defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to state and local officials. Information about accidental chemical releases must be available to the public, Florida Reporting requirements below. CERCLA RQ‐ Releases of CERCLA hazardous substances, in quantities equal to or greater than their reportable quantity (RQ) in pounds, are subject to reporting to the Florida Reporting requirements below. Florida Reporting requirements: National Response Center Florida State Watch Office (800) 424-8802 (800) 320-0519 or (850) 815-4001 Florida Department of Environmental Protection Spill reporting requirements https://floridadep.gov/pollutionnotice Florida Division of Emergency Management 2555 Shumard Oak blvd.
    [Show full text]