Space Ight Inc. Celebrates 10 Years of Business and the Successful

Total Page:16

File Type:pdf, Size:1020Kb

Space Ight Inc. Celebrates 10 Years of Business and the Successful NEWS RELEASE Spaceight Inc. Celebrates 10 Years of Business and the Successful Launch of More than 300 Satellites 2/23/2021 Since its founding, the premier global launch services provider executed 36 missions, with more than half coming in the last three years SEATTLE--(BUSINESS WIRE)-- Spaceight Inc., the global launch services provider, celebrates its 10th anniversary. Since its founding, the company has launched more than 300 satellites across 36 missions on eight dierent launch vehicles, including the Falcon 9, Electron, PSLV, Vega and the International Space Station. During its 10 years in business, Spaceight has evolved from launch brokerage to providing comprehensive launch and mission management services for payloads of all sizes, across a wide range of launch vehicles, with integration and logistics services, a portfolio of propulsive orbital transfer vehicles (OTVs), and the widest variety of orbital destinations. Infographic showcasing a selection of Spaceight's most noteworthy accomplishments over “This is a monumental milestone the past 10 years. (Graphic: Business Wire) for our company,” said Curt Blake, CEO and president of Spaceight. “Ten years ago, rideshare was just a concept. We founded the company to serve the growing need for frequent and aordable launch options for the burgeoning smallsat industry. Since then, we’ve innovated new services, global launch practices, and OTV technology as well as executed several industry-rst missions. We’re very proud of our pioneering spirit to provide the most exible launch options for customers, helping them get their spacecraft on orbit when and where they want.” Highlights: 10 Years of Launch Experience 1 After founding the company in 2011, Spaceight executed its rst launch in 2013 aboard a Soyuz vehicle. In 2015, it purchased its rst Falcon 9 rideshare mission, and in 2016, its rst PSLV launch. More signicant stats include: 36 total missions executed in the last 10 years with half occurring in the last two and a half years 327 spacecraft deployed with nearly 70% launching in the last two and a half years Serving 79 unique customers, 75% of those commercial organizations Customers from 29 dierent countries, with more than 24 countries represented in each of the last three years More than 4,000 kilograms of total spacecraft mass launched 50% of launches have occurred on foreign launch vehicles Launches on eight launch vehicles, including Falcon 9, Electron, Vega, Soyuz, Antares and PSLV with agreements to y on new vehicles including Virgin Orbit, Relativity, Firey, and SSLV, when available “Spaceight has been a trusted partner and our go-to launch service provider for years,” said Kjell Karlsen, Chief Financial Ocer at Astrocast. “The team’s expertise provides us with the peace of mind that our mission will be expertly managed. This coupled with the exibility enabled by the company’s diverse portfolio of launch options makes Spaceight a preferred provider for us. Congratulations on the 10-year milestone; it’ll be exciting to see what innovations they pioneer and bring to market in the next 10 years!” Beyond the launches, Spaceight has accomplished other noteworthy milestones, including: Pioneered the Sherpa-NG program, which includes three ESPA-class space vehicles complete with electric and chemical propulsion for last-mile delivery in space; the rst OTV (Sherpa-FX) ew on record-breaking SpaceX Transporter-1 launch. Executed the historic SSO-A mission, the rst Falcon 9 dedicated rideshare mission, which launched 64 satellites from 34 customers from 17 countries. At the time, it was the largest number of satellites to ever launch from a U.S.-based vehicle. Orchestrated the rst-ever rideshare mission to GTO, launching the rst privately funded lunar lander. Opened a new state-of-the-art integration facility in Auburn, Wash. where the team conducts end-to-end spacecraft testing, integration and engineering services. Secured a U.S. General Services Administration (GSA) contract to oer cost-eective launch services for U.S. government organizations. Unveiled the rst online booking site for customers to reserve launches and a mission management portal for easy online launch campaign coordination. Acquired by Mitsui & Co., Ltd., in partnership with Yamasa Co., Ltd., enabling deep resources to propel innovation and expand service oerings. 2 In January 2021, Spaceight completed the successful launch of Sherpa-FX which carried 15 spacecraft on the record-setting SpaceX Transporter-1 mission. For its next mission, Spaceight will be coordinating launch and mission services for several U.S. government spacecraft to the International Space Station on the SEOPS-3/ NG-15 mission. The company plans to launch approximately 10 missions across its global launch vehicle portfolio in 2021. About Spaceight Inc. As the premier global launch services provider, Spaceight is revolutionizing the business of space transportation through its comprehensive suite of launch services and Sherpa® orbital transfer vehicles. The company provides unprecedented launch exibility to ensure customers' smallsats get to orbit exactly when and where they want through a combination of long-standing relationships with a diverse portfolio of launch partners, innovative satellite integration capabilities, including ight and ground support hardware, licensing and logistics management, and extensive mission management expertise. Based in Seattle, Spaceight has successfully launched hundreds of satellites and is a part of the Mitsui & Co., Ltd. portfolio, operating as an independent, U.S.-based company. For more information, visit http://www.spaceight.com. Christie Melby, Communiqué PR [email protected] 206-282-4923 x127 Source: Spaceight Inc. 3.
Recommended publications
  • Spaceflight, Inc. General Payload Users Guide
    Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Spaceflight, Inc. General Payload Users Guide 3415 S. 116th St, Suite 123 Tukwila, WA 98168 866.204.1707 spaceflightindustries.com i Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Document Revision History Rev Approval Changes ECN No. Sections / Approved Pages CM Date A 2011‐09‐16 Initial Release Updated electrical interfaces and launch B 2012‐03‐30 environments C 2012‐07‐18 Official release Updated electrical interfaces and launch D 2013‐03‐05 environments, reformatted, and added to sections Updated organization and formatting, E 2014‐04‐15 added content on SHERPA, Mini‐SHERPA and ISS launches, updated RPA CG F 2015‐05‐22 Overall update ii Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Table of Contents 1 Introduction ........................................................................................................................... 7 1.1 Document Overview ........................................................................................................................ 7 1.2 Spaceflight Overview ....................................................................................................................... 7 1.3 Hardware Overview ......................................................................................................................... 9 1.4 Mission Management Overview .................................................................................................... 10 2 Secondary
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Eurospace Position Paper on Aggregation of European Institutional Launch Services
    Eurospace position paper on aggregation of European institutional launch services Preamble Space is a strategic and multifaceted tool in daily-life for European governments, businesses and citizens: indeed, space-based applications support major crisis management, economic growth, innovation, employment and information access, resulting in a significant benefit for people, growth, employment and innovation. In order to keep the European autonomous access to space, it is thus essential for Europe to maintain its global leadership throughout the entire value chain of the space sector. With 82 successful Ariane 5 flights in a row and 11 flawless Vega flights out of 11 attempts from the Guiana Space Center, the current ESA-developed European fleet of Launchers is characterized by an unprecedented, worldwide recognized reliability. Arianespace, the European Launch Service Provider, has got more than 40 years of experience and competence in this sector and can count on a highly competitive industrial base with skilled workforce and recognized high level of expertise and excellence. Nonetheless, the current worldwide scenario is being severely challenged by an aggressive competition and asymmetries in access to the market: in particular, the size of captive markets and pricing policies are different from one space power to the other, resulting in an unbearable competitive disadvantage for the European launcher industry. The aggregation of all European institutional launch services is needed in order to counter such distortions and move towards a level-playing field to the benefit of Europe developed launchers. The current scenario - Analysis of asymmetries Arianespace’s business model relies on a significant success in the commercial and foreign institutional launch market.
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • Av Clio Mob.Pdf
    ATLAS V Pantone 661 Pantone Black 6 A United Launch Alliance Atlas V 401 launch vehicle will deliver Pantone 459 the CLIO spacecraft to orbit for Lockheed Martin Space Systems Company. Liftoff will occur from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL. Pantone Cool Gray 10 Pantone 286 Since 1957, the Atlas rocket has been an integral part of the United The ULA team is proud to launch the CLIO mission on an Atlas V 401, States’ space program, supporting national defense missions, from Space Launch Complex 41, for Lockheed Martin Space Systems launching Mercury astronauts to orbit, and sending spacecraft to the Company. farthest reaches of the solar system. Over its nearly six decades, the The ULA team is focused on attaining Perfect Product Delivery for the Atlas booster has undergone a series of continuous improvements, CLIO mission, which includes a relentless focus on mission success (the culminating in the current Atlas V Evolved Expendable Launch Vehicle perfect product) and also excellence and continuous improvement in (EELV). Designed in partnership with the U.S. Air Force, the modu- meeting all of the needs of our customers (the perfect delivery). lar design of the Atlas V allows for multiple configurations to meet specific customer requirements. We sincerely thank the entire team, which consists of Lockheed Martin, their U.S. government sponsor, ULA, and major suppliers of ULA. All Atlas V launch vehicles consist of a common core booster first stage, a Centaur second Go Atlas, Go Centaur, Go CLIO! stage, and either a 4-m-diameter or a 5-m-diameter payload fairing.
    [Show full text]
  • Trends in Space Commerce
    Foreword from the Secretary of Commerce As the United States seeks opportunities to expand our economy, commercial use of space resources continues to increase in importance. The use of space as a platform for increasing the benefits of our technological evolution continues to increase in a way that profoundly affects us all. Whether we use these resources to synchronize communications networks, to improve agriculture through precision farming assisted by imagery and positioning data from satellites, or to receive entertainment from direct-to-home satellite transmissions, commercial space is an increasingly large and important part of our economy and our information infrastructure. Once dominated by government investment, commercial interests play an increasing role in the space industry. As the voice of industry within the U.S. Government, the Department of Commerce plays a critical role in commercial space. Through the National Oceanic and Atmospheric Administration, the Department of Commerce licenses the operation of commercial remote sensing satellites. Through the International Trade Administration, the Department of Commerce seeks to improve U.S. industrial exports in the global space market. Through the National Telecommunications and Information Administration, the Department of Commerce assists in the coordination of the radio spectrum used by satellites. And, through the Technology Administration's Office of Space Commercialization, the Department of Commerce plays a central role in the management of the Global Positioning System and advocates the views of industry within U.S. Government policy making processes. I am pleased to commend for your review the Office of Space Commercialization's most recent publication, Trends in Space Commerce. The report presents a snapshot of U.S.
    [Show full text]
  • Information Summary Assurance in Lieu of the Requirement for the Launch Service Provider Apollo Spacecraft to the Moon
    National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program was established for mission success. at Kennedy Space Center for NASA’s acquisi- The principal objectives are to provide safe, reli- tion and program management of Expendable able, cost-effective and on-schedule processing, mission TLaunch Vehicle (ELV) missions. A skillful NASA/ analysis, and spacecraft integration and launch services contractor team is in place to meet the mission of the for NASA and NASA-sponsored payloads needing a Launch Services Program, which exists to provide mission on ELVs. leadership, expertise and cost-effective services in the The Launch Services Program is responsible for commercial arena to satisfy Agencywide space trans- NASA oversight of launch operations and countdown portation requirements and maximize the opportunity management, providing added quality and mission information summary assurance in lieu of the requirement for the launch service provider Apollo spacecraft to the Moon. to obtain a commercial launch license. The powerful Titan/Centaur combination carried large and Primary launch sites are Cape Canaveral Air Force Station complex robotic scientific explorers, such as the Vikings and Voyag- (CCAFS) in Florida, and Vandenberg Air Force Base (VAFB) in ers, to examine other planets in the 1970s. Among other missions, California. the Atlas/Agena vehicle sent several spacecraft to photograph and Other launch locations are NASA’s Wallops Island flight facil- then impact the Moon. Atlas/Centaur vehicles launched many of ity in Virginia, the North Pacific’s Kwajalein Atoll in the Republic of the larger spacecraft into Earth orbit and beyond. the Marshall Islands, and Kodiak Island in Alaska.
    [Show full text]
  • Launch Uncertainty
    GRANT R. CATES Grant R. Cates is a senior engineering specialist at The Aerospace Corporation in Chantilly, Virginia. He has more than 30 years of experience in space launch and simulation modeling. His recent work and publications have focused on the use of discrete event simulation to advise the Air Force on future launch rates and NASA on the space shuttle, the International Space Station, human exploration of the solar system, and launch probability. Cates received a bachelor’s degree in engineering science from Colorado State University and a master’s degree and Ph.D. in industrial engineering from the University of Central Florida. DANIEL X. HOUSTON Daniel X. Houston is a senior project leader at The Aerospace Corporation in El Segundo, California. He applies qualitative and quantitative analytical methods, including statistics and simulation, to industrial and software engineering processes. Houston received a B.S. in mechanical engineering from The University of Texas at Austin and a master’s degree and Ph.D. in industrial engineering at Arizona State University. His publications include statistical modeling and simulation of software development processes, software process improvement, and the management of software projects, with a focus on risk, product quality, and economics. DOUGLAS G. CONLEY Douglas G. Conley is chief engineer of Launch Program Operations at The Aerospace Corporation in El Segundo, California. He has been engaged in domestic and international space launch programs spacecraft systems engineering, and mission assurance for over 35 years, mostly in the commercial realm before joining Aerospace in 2016. Conley received a B.S. in engineering and applied science from Caltech and a master’s degree in dynamics and control from the University of California, Los Angeles.
    [Show full text]
  • Behind Text.” Should Automatically to Edge (8.5 X 11)
    Insert Cover jpeg here. Make wrapping “Behind Text.” Should automatically to edge (8.5 x 11). JEFFREY C. BOULWARE Jeffrey C. Boulware is a senior project engineer in The Aerospace Corporation’s National Systems Group where he conducts strategic planning for long-term enterprise acquisitions. Prior to joining Aerospace in January 2018, he served as a civil servant in the Air Force’s ICBM System Directorate in key leadership positions related to the modernization and sustainment of ICBM weapon systems. He holds a master’s degree in military operational art and science from Air University and a Ph.D. in mechanical and aerospace engineering from Utah State University. ABOUT THE CENTER FOR SPACE POLICY AND STRATEGY The Center for Space Policy and Strategy is dedicated to shaping the future by providing nonpartisan research and strategic analysis to decisionmakers. The Center is part of The Aerospace Corporation, a nonprofit organization that advises the government on complex space enterprise and systems engineering problems. The views expressed in this publication are solely those of the author(s), and do not necessarily reflect those of The Aerospace Corporation, its management, or its customers. For more information, go to www.aerospace.org/policy or email [email protected]. Summary The options for post-retirement uses of intercontinental ballistic missiles (ICBMs) are controlled by Title 51, Section 50134, of the U.S. Code. This policy prohibits the transfer of ICBM systems to private industry for commercial space launch purposes. Advocates for change would like to create a low-cost launch service provider whereas opponents to changing the policy argue this would unbalance the commercial launch market and stifle innovation from emerging companies.
    [Show full text]
  • Assessing the Impact of US Air Force National Security Space Launch Acquisition Decisions
    C O R P O R A T I O N BONNIE L. TRIEZENBERG, COLBY PEYTON STEINER, GRANT JOHNSON, JONATHAN CHAM, EDER SOUSA, MOON KIM, MARY KATE ADGIE Assessing the Impact of U.S. Air Force National Security Space Launch Acquisition Decisions An Independent Analysis of the Global Heavy Lift Launch Market For more information on this publication, visit www.rand.org/t/RR4251 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0399-5 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2020 RAND Corporation R® is a registered trademark. Cover: Courtesy photo by United Launch Alliance. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface The U.S.
    [Show full text]
  • 2013 Commercial Space Transportation Forecasts
    Federal Aviation Administration 2013 Commercial Space Transportation Forecasts May 2013 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) • i • 2013 Commercial Space Transportation Forecasts About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover: The Orbital Sciences Corporation’s Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. Image Credit: NASA/Bill Ingalls NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Table of Contents EXECUTIVE SUMMARY . 1 COMSTAC 2013 COMMERCIAL GEOSYNCHRONOUS ORBIT LAUNCH DEMAND FORECAST .
    [Show full text]