The Future of the European Space Sector How to Leverage Europe’S Technological Leadership and Boost Investments for Space Ventures

Total Page:16

File Type:pdf, Size:1020Kb

The Future of the European Space Sector How to Leverage Europe’S Technological Leadership and Boost Investments for Space Ventures The future of the European space sector How to leverage Europe’s technological leadership and boost investments for space ventures The future of the European space sector How to leverage Europe’s technological leadership and boost investments for space ventures Prepared for: The European Commission By: Innovation Finance Advisory in collaboration with the European Investment Advisory Hub, part of the European Investment Bank’s advisory services Authors: Alessandro de Concini, Jaroslav Toth Supervisor: Shiva Dustdar Contact: [email protected] Consultancy support: SpaceTec Partners © European Investment Bank, 2019. All rights reserved. All questions on rights and licensing should be addressed to [email protected] Disclaimer This Report should not be referred to as representing the views of the European Investment Bank (EIB), of the European Commission (EC) or of other European Union (EU) institutions and bodies. Any views expressed herein, including interpretation(s) of regulations, reflect the current views of the author(s), which do not necessarily correspond to the views of EIB, of the EC or of other EU institutions and bodies. Views expressed herein may differ from views set out in other documents, including similar research papers, published by the EIB, by the EC or by other EU institutions and bodies. Contents of this Report, including views expressed, are current at the date of publication set out above, and may change without notice. No representation or warranty, express or implied, is or will be made and no liability or responsibility is or will be accepted by EIB, by the EC or by other EU institutions and bodies in respect of the accuracy or completeness of the information contained herein and any such liability is expressly disclaimed. Nothing in this Report constitutes investment, legal, or tax advice, nor shall be relied upon as such advice. Specific professional advice should always be sought separately before taking any action based on this Report. Reproduction, publication and reprint are subject to prior written authorisation of the authors. Forewords Space has always been a source of inspiration to explorers and scientists. From physics to chemistry, from material sciences to engineering, the pursuit of space has produced revolutionary technologies and vastly broadened humankind’s scientific knowledge. It has also improved our everyday life in many ways — the European Space Agency estimates that for every Euro spent in the sector there has been six Euros benefit to society. Until recently, space used to be synonymous with government spending: the enormous costs and risks involved made the sector generally inaccessible to private players. Today, major technology advancements and a new entrepreneurial spirit are rapidly shaping a new space economy. The sector sees the emergence of new private actors who see unrivalled commercial opportunities in space exploration and exploitation thanks to frontier technologies and the data revolution. Europe has historically been at the forefront of space exploration, investing massively in space infrastructures such as in the Copernicus and Galileo programmes. It still boasts academic and scientific excellence but it is at risk of losing out on the next wave of space innovation unless it seizes the opportunity to stimulate more investment in the new space sector. It is against this backdrop that I welcome this timely market assessment by our EIB advisory services coming ahead of defining space policy decisions. It not only highlights the disruptive forces transforming the space sector, challenging the old and new players alike; it also gives a clear roadmap on how we can leverage our current public financial support schemes at national and EU levels to pull in the much needed private capital. I particularly welcome the idea of setting up a “Space Finance Forum” to bring together the expertise of financial, industrial and academic stakeholders to explore and pilot new patient financing mechanisms and catalyse private investment in the sector. Last but not least I would like to thank my colleagues at the European Commission for the excellent collaboration and senior sponsorship throughout the study. We at the EIB are committed to mobilise our technical expertise and financial firepower and work with you to keep Europe at the forefront of the New Space era! Werner Hoyer President of the European Investment Bank 04 Towards a European approach to “New Space” Europe — the Member States, the EU, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) — has achieved many successes in space with breakthrough technologies and exploration missions, such as EU space projects: Copernicus — Europe’s Earth observation system — or Galileo, the satellite navigation and geo-positioning system, ESA’s exploring missions such as Rosetta or BepiColombo, as well as unique Earth observation and meteorology capabilities, such as Meteosat, and world-leading commercial telecommunications and launch systems with the Ariane family and Vega. Europe represents today the second largest public space budget in the world with programmes and facilities spanning different European countries. Between 2014 and 2020, the EU alone will invest over EUR 12 billion in space activities. It owns world-class space systems with Copernicus EGNOS and Galileo. With 33 satellites currently in orbit and over 30 planned in the next 10–15 years, the EU is the largest institutional customer for launch services in Europe. Nowadays, space technologies, data and services have become indispensable in the daily lives of European citizens. The international space context is changing fast — global competition is increasing with new entrants bringing new ambitions in space and space activities are becoming increasingly commercial with greater private sector involvement. Major technological shifts, such as digitalisation, miniaturisation, artificial intelligence or reusable launcher, are disrupting traditional business models in the space sector, reducing the cost of accessing and using space. The European space sector needs to adapt to seize business opportunities stemming from those changes so that Europe can keep its leadership and strategic autonomy in space. In this context, the Space Strategy for Europe, proposed by the Commission and enriched with the political orientations of the Council and Parliament set a high ambition for Europe to remain a space power and embrace the challenges ahead. Realising these ambitions requires fostering investments and an entrepreneurial space ecosystem in Europe. Numerous Union programmes and initiatives accompany the early stages or scaling up of start-ups, notably through the Union’s Investment Plan and its European Fund for Strategic Investments (EFSI) or the Union Framework Programme for Research and Innovation. They have helped to stimulate a number of investments into the space sector. Likewise, the recently launched VentureEU is expected to facilitate this process further. Looking ahead, the Commission has made ambitious proposals for the next Multi-annual Financial Framework (MFF) of the Union for the period 2021–2027. These include a dedicated Space programme for a total of EUR 16 billion, space research addressed by Horizon Europe, the next Union Framework Programme for Research and Innovation, and space investments addressed by the Invest EU programme. Access to finance remains as one of the identified bottleneck to space entrepreneurship in Europe. For the first time, the EU Space Programme proposes specific provisions to support the emergence of a “European New Space”. And precisely smart financing for space is at the heart of this strategy and will rely on synergies among all the programmes as well as between European and national levels. The analysis and recommendations of this report will help to shape the concrete solutions in the implementation of those programmes to stimulate more investments in space in Europe. Therefore, I am pleased to introduce this report prepared for the European Commission by the European Investment Bank through the collaboration between Innovation Finance Advisory and European Investment Advisory Hub. I would also like to extend our special thanks to all stakeholders who have contributed to this work. Elżbieta Bieńkowska Commissioner for Internal Market, Industry, Entrepreneurship and SMEs 05 Executive Summary Europe boasts a strong space sector. This is largely the legacy of successful space programmes, particularly those on satellite navigation and Earth observation, mostly built on public support. However, the space sector is undergoing unprecedented transformation and development on a global scale. Major technology advancements, a new entrepreneurial spirit and a renewed policy focus have put the space sector under the spotlight on the global innovation stage. Such rapid and constant transformation calls for new approaches to funding and supporting space ventures. The global space economy grew by 6.7 % on average per year between 2005 and 2017, almost twice the 3.5 % average yearly growth of the global economy. One particular contribution to this growth has been the “NewSpace” phenomenon: a series of technological and business model innovations that have led to a significant reduction in costs and resulted in the provision of new products and services that have broadened the existing customer base. Glossary NewSpace: a global trend encompassing an emerging investment philosophy
Recommended publications
  • Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context
    United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications ....................................................................................................................
    [Show full text]
  • Call for M5 Missions
    ESA UNCLASSIFIED - For Official Use M5 Call - Technical Annex Prepared by SCI-F Reference ESA-SCI-F-ESTEC-TN-2016-002 Issue 1 Revision 0 Date of Issue 25/04/2016 Status Issued Document Type Distribution ESA UNCLASSIFIED - For Official Use Table of contents: 1 Introduction .......................................................................................................................... 3 1.1 Scope of document ................................................................................................................................................................ 3 1.2 Reference documents .......................................................................................................................................................... 3 1.3 List of acronyms ..................................................................................................................................................................... 3 2 General Guidelines ................................................................................................................ 6 3 Analysis of some potential mission profiles ........................................................................... 7 3.1 Introduction ............................................................................................................................................................................. 7 3.2 Current European launchers ...........................................................................................................................................
    [Show full text]
  • REASONS to MIND ASTEROIDS with the Rapid Progress Made In
    ASTEROID MINING & ITS LEGAL IMPLICATIONS Neil Modi & Devanshu Ganatra Presentation ID- IAC- 16.E7.IP.23.x32357 REASONS TO MINE ASTEROIDS With the rapid progress made in technology, humans are taking huge steps in space today. There is huge potential in space, and particularly in asteroid mining. ENERGY CRISIS RARE EARTH METALS • Non-renewable fossil fuels like coal, oil currently account for 81% of • Many of the metals widely used in almost all industrial products the world’s primary energy. were always limited and are now in SHORT SUPPLY leading to skyrocketing manufacturing costs. • EARLIER, renewable energy could not compete with non-renewable sources because it relied on metals in short supply. Resources found • These include Platinum Group Metals (PMGS) and others like on asteroids would solve this problem completely. gold, cobalt, iron, molybdenum etc. Image Credit-The U.S. Energy Image Credit- FuelSpace.org- ‘How Asteroids Can Information Administration Save Mankind’ PROJECTED SCARCITY OF RESOURCES ON EARTH Image Credit-Shackleton Energy Company Image Credit- Chris Clugston’s ‘An Oil Drum- An Analysis’ (2010) THE NEED FOR WATER 1. SUPPORT SYSTEM FOR ASTRONAUTS- Since the main constituents of water HYDRATION AND OXYGEN are hydrogen and oxygen, it is a source of oxygen for life support. TO ASTRONAUTS 2. PROTECTION FROM RADIATION- Water absorbs and blocks infrared radiation, which means that by storing heat it helps to maintain temperature. 3. ROCKET FUEL- Rocket propellant is hydrogen and oxygen based, with a large percentage of the weight of a spacecraft taken up by fuel. 4. SPACE EXPLORATION- A GAS STATION IN SPACE KEY TO SPACE BLOCKS EXPLORATION WATER RADIATION Today billions of dollars are spent in rocket fuel to sustain space explorations.
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Who Won the Cold War? a Learning Packet for Secondary Level Study
    DOCUMENT RESUME ED 464 887 SO 033 846 TITLE Who Won the Cold War? A Learning Packet for Secondary Level Study. INSTITUTION Kansas Univ., Lawrence. Center for Russian and East European Studies. PUB DATE 2000-00-00 NOTE 73p. AVAILABLE FROM Center for Russian and East European Studies, 320 Bailey Hall, 1440 Jayhawk Blvd., Lawrence, KS 66045-7574. Tel: 785-864-4236; Fax: 785-864-3800; e-mail: [email protected]; Web site: http://www.ukans.edu/-crees/. PUB TYPE Guides Classroom Teacher (052) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS Curriculum Enrichment; Foreign Countries; High Schools; *International Relations; Korean War; *Models; *Modern History; Primary Sources; *World Affairs; *World History IDENTIFIERS Cold War; United States; USSR ABSTRACT Realizing that the Cold War is a topic that often is neglected as time runs short at the end of a school year, a group of University of Kansas (Lawrence) educators sought to create effective classroom materials for secondary/community college instructors to teach about the Cold War. The group's main goal was to create a flexible model that encouraged study of the topic for the amount of time available. This Cold War learning packet provides materials and directions to guide students through a research and decision-making activity. Following a brief review of the Cold War period, the materials in the packet lead students to analyze a key Cold War event from both a Soviet and U.S. point of view, using a variety of primary sources. The key event is analyzed using the packet's Cold War Def Con model.
    [Show full text]
  • VI. Wednesday 19 April Meeting with General
    Ref. Ares(2019)5332022 - 21/08/2019 V I. Wednesday 19 April Meeting with General Electric 10:15-12:00 GE HQ in Boston 41 Farnsworth St, Boston TABLE OF CONTENTS 0. AGENDA OF MEETING Page No 57 1. STEERING BRIEF Page No 58 2. SPEAKING POINTS Page No 60 3. BACKGROUND Page No 61 2/20 0. AGENDA OF MEETING 10:00 Meeting the of GE: ( ) ( ). 11:00 Meeting with of GE 3/20 1.2 Objectives This is a courtesy meeting aiming at maintaining good relations. • Confirming the importance of research and business relations between GE and their European-based companies (e.g. Italian AVIO, Czech Walter), as well their 43 and 57 year-old joint ventures/partnerships with French SAFRAN and German MTU respectively, in a mutual interest of Europe and the USA. 1.3 Line to take • To state that global aviation markets and global industrial supply chain will profit from targeted R&D collaboration in energy, transport and health sectors; • To explain the 3Os initiative and link it with the digital and data industrial transformation; • Regarding FP9 and future Clean Sky activities, explain that despite the political uncertainties and upcoming assessments and recommendations, FP9 would be strongly oriented to be open for collaboration with the USA and GE is very welcome in that context. • To share your views that USA-based European companies and EU-based USA companies should have a level-playing field, especially in IPR and transfer of knowledge issues; • To share your views on the role of the European Commission in public-private collaboration on research and innovation and in particular within Clean Sky, that such collaborations go beyond research funding and create business opportunities; • To explain that GE will have a greater role in Clean Sky 2, as following the 1st call for core partners, GE Aviation was selected.
    [Show full text]
  • Synthetic Aperture Radar
    Synthetic Aperture Radar Subjects: Information Technology & Data Management Submitted by: Sung Wook Paek Definition SAR constellations Table of Contents [Hide] 1. Introduction Space-based radar observation has growing potentials for monitoring the global biospheric diversity subject to anthropogenic drivers at geological scales [1]. The performance of radar is less affected by weather and sunlight conditions than that of optical sensors. Satellites with onboard sensors can provide comprehensive coverage of remote areas or vast regions that may be too costly for unmanned aerial vehicles (UAVs) or ground-based platforms, provided that all platforms provide congruent results via calibrations [2][3][4]. Therefore, it was Seasat, the first satellite dedicated to remote sensing of the Earth’s oceans, that carried the first synthetic aperture radar (SAR) and other radar instruments operable in space. Despite these advantages, miniaturization of radar-carrying satellites was rather slow compared to satellites carrying optical devices due to the lack of commercial-off-the-shelf (COTS) components as well as challenging design requirements for the satellite platform [5][6]. Representative use cases of space-based radar include altimetry, sounding, scatterometry, and so forth in the studies of land, cryosphere, and oceans. Biospheric monitoring is another useful application because radar has high sensitivity in detecting surface changes in a target area and discriminating mobile targets against a background [7]. This paper will consider mainly SAR because of its three-dimensional mapping capability through interferometry. The heritage of Seasat has influenced many of later SAR missions for decades, as listed in Table 1 [8][9][10][11][12][13]; for instance, Shuttle Image Radar (SIR) missions used spare parts of the previous Seasat mission onboard Space Shuttles to test SAR image applications in land use, geology, hydrology, and forestry [14][15].
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]
  • 2019 Nano/Microsatellite Market Forecast, 9Th Edition
    2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018.
    [Show full text]
  • Historical Dictionary of Air Intelligence
    Historical Dictionaries of Intelligence and Counterintelligence Jon Woronoff, Series Editor 1. British Intelligence, by Nigel West, 2005. 2. United States Intelligence, by Michael A. Turner, 2006. 3. Israeli Intelligence, by Ephraim Kahana, 2006. 4. International Intelligence, by Nigel West, 2006. 5. Russian and Soviet Intelligence, by Robert W. Pringle, 2006. 6. Cold War Counterintelligence, by Nigel West, 2007. 7. World War II Intelligence, by Nigel West, 2008. 8. Sexspionage, by Nigel West, 2009. 9. Air Intelligence, by Glenmore S. Trenear-Harvey, 2009. Historical Dictionary of Air Intelligence Glenmore S. Trenear-Harvey Historical Dictionaries of Intelligence and Counterintelligence, No. 9 The Scarecrow Press, Inc. Lanham, Maryland • Toronto • Plymouth, UK 2009 SCARECROW PRESS, INC. Published in the United States of America by Scarecrow Press, Inc. A wholly owned subsidiary of The Rowman & Littlefield Publishing Group, Inc. 4501 Forbes Boulevard, Suite 200, Lanham, Maryland 20706 www.scarecrowpress.com Estover Road Plymouth PL6 7PY United Kingdom Copyright © 2009 by Glenmore S. Trenear-Harvey All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. British Library Cataloguing in Publication Information Available Library of Congress Cataloging-in-Publication Data Trenear-Harvey, Glenmore S., 1940– Historical dictionary of air intelligence / Glenmore S. Trenear-Harvey. p. cm. — (Historical dictionaries of intelligence and counterintelligence ; no. 9) Includes bibliographical references. ISBN-13: 978-0-8108-5982-1 (cloth : alk. paper) ISBN-10: 0-8108-5982-3 (cloth : alk. paper) ISBN-13: 978-0-8108-6294-4 (eBook) ISBN-10: 0-8108-6294-8 (eBook) 1.
    [Show full text]