Synthetic Aperture Radar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rafael Space Propulsion
Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests. -
2019 Nano/Microsatellite Market Forecast, 9Th Edition
2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Loft Orbital MAKES SPACE ACCESSIBLE Executive Interview with Alex Greenberg, Co-Founder & Head of Operations
ANALYTICS SERIES: The Importance of The Value of Space Food Monitoring with Oceans & Standardization TellusLabs, and Urban UN SDG #14 by Dylan Taylor Transportation with p. 12 p. 8 StreetLight Data p. 24 THE HISTORY AND FUTURE OF by Jörg Herrmann, SAR Remote Sensing Expert, HUtABSAR Consulting “ There has been doubt among the SAR community if such compact designs can deliver any useful imagery... Now the first of its kind has been launched by ICEYE, and it works: 10-m resolution SAR imagery from a prototype, and a plan of reaching 3-m resolution with future satellites.” P. 16 Loft Orbital MAKES SPACE ACCESSIBLE Executive Interview with Alex Greenberg, Co-founder & Head of Operations Our approach is to make space simple for both current and would-be users of space. Our initial clients include startups with business cases that require space-based data, government agencies with monitoring missions that need a more robust platform than a cubesat, large corporations looking to demonstrate a technology in orbit, and academic institutions that have developed a novel payload and need a ride to space.” p. 20 Mato Grosso, Brazil in South America, [ Summer 2018 / Vol. 33 / No. 3 ] courtesy of TellusLabs. Innovation Vega’s Small Spacecraft Mission System (SSMS) is a product of the innovative culture that prevails at Arianespace. The SSMS payload dispenser will revolutionize and democratize access to space for countless new satellite companies that would otherwise remain grounded due to lack of launch capacity. With its perfect record and competitive pricing, the Vega is the right vehicle at the right time. -
OFEK-9 Soars Into Space
A MONTHLY REPORT COVERING NEWS AND INVESTMENT OPPORTUNITIES JOSEPH MORGENSTERN, PUBLISHER July 2010 Vol. XXV Issue No.7 You are invited to visit us at our website: http://ishitech.co.il OFEK-9 Soars into Space Towards the end of With the launch of Ofek-9, Israel has six spy satel- June Israel launched lites in space. a spy satellite from Defense News is a leading international news a base in the south weekly covering the global defense industry. of the country, the Barbara Opall-Rome, the Defense News’ Israeli defence ministry said, with the device report- edly capable of monitoring arch-foe Iran. co.il “A few minutes ago the State of Israel launched http://ishitech. the Ofek-9 (Horizon-9) satellite from the Pal- machim base,” the ministry said. “The results of the launch are being examined by the technical In this Issue team.” It gave no details on the satellite, but public Ofek-9 soars into space radio said it, like its predecessors in the Ofek BiolineRX deal with Cypress Bioscience worth up to $365m series, were capable of taking high resolution Merck Serono to expand Israel operations pictures and aimed at monitoring Iran’s nuclear Collagen made from transgenic tobacco plants Economic Developments Q1 2010 programme. Computers used in drive to test stress Computers used in drive to test stress The radio said the satellite was developed by Diamonds in space Israel Aircraft Industries and launched on a Sha- Nano-diamonds are forever “Bad Name” vit rocket. “A Nice Shower” Odds & Ends Israel, regards Iran as its principal threat after Medtronic invests $70m in cardiology co BioControl repeated predictions by the Islamic republic’s hardline President Mahmoud Ahmadinejad of the Jewish state’s demise. -
Synthetic Aperture Radar (SAR) (L-Band, Res
University of Rome “Sapienza”, Faculty of Enginnering, Aula del Chiostro, June 14th, 2016 1 SPACE BASED RADAR: A SECRET START 21/12/1964: Quill (P-40), NRO experimental satellite of Corona Program. 1st SAR in orbit (all weather all time imaging) Due to the poor quality, images were considered useless and the program was discontinued (secret until 9 July 2012) RADAR ALTIMETRY: A NEW START IN 1973 14/5/1973 Skylab: mission included S-193, NASA & DoD experimental multimode instrument, including technology test of Radar Altimetry at 13,9 GHz. Positive results. 9/4/1975 Geodynamics Experimental Ocean Satellite (GEOS-3) : First satellite totally dedicated to radar altimetry (13,9 GHz, height accuracy=20 cm). Unexpected result: evaluation of surface wind speed from RA data 27/6/1978:Seasat, 3 out of 5 instruments were radar: Radar Altimeter: f.o. of GEOS-3, (Ku- band, accur. 10cm)Scatterometer and the “first official” Synthetic Aperture Radar (SAR) (L-band, Res. 25m) Quil Seasat 2 1981, 1984: SPACE SHUTTLE, A NEW OPPORTUNITY FOR EARTH OBSERVATION Apr. 12, 1981: Inaugural flight of the Space Shuttle. Nov. 12-14, 1981: OSTA-1,(Office of Space and Terrestrial Applications) comprised the first Shuttle Imaging Radar A (SIR-A). L band, resolution40x40 m, fixed look angle 47°, swath width 50 km, based on Seasat design, and using its spare parts as well as spare parts of other NASA missions (other 4 instruments were different passive sensors in VIS-IR) Oct. 5-13, 1984: OSTA-3, Shuttle Imaging Radar–B (SIR-B). Upgraded SIR-A, L band, resolution 30-20m (azimuth), 58-16m (range), variable look angle 15°-65°, swath width 50 km. -
State of the Space Industrial Base 2020 Report
STATE OF THE SPACE INDUSTRIAL BASE 2020 A Time for Action to Sustain US Economic & Military Leadership in Space Summary Report by: Brigadier General Steven J. Butow, Defense Innovation Unit Dr. Thomas Cooley, Air Force Research Laboratory Colonel Eric Felt, Air Force Research Laboratory Dr. Joel B. Mozer, United States Space Force July 2020 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. DISCLAIMER The views expressed in this report reflect those of the workshop attendees, and do not necessarily reflect the official policy or position of the US government, the Department of Defense, the US Air Force, or the US Space Force. Use of NASA photos in this report does not state or imply the endorsement by NASA or by any NASA employee of a commercial product, service, or activity. USSF-DIU-AFRL | July 2020 i ABOUT THE AUTHORS Brigadier General Steven J. Butow, USAF Colonel Eric Felt, USAF Brig. Gen. Butow is the Director of the Space Portfolio at Col. Felt is the Director of the Air Force Research the Defense Innovation Unit. Laboratory’s Space Vehicles Directorate. Dr. Thomas Cooley Dr. Joel B. Mozer Dr. Cooley is the Chief Scientist of the Air Force Research Dr. Mozer is the Chief Scientist at the US Space Force. Laboratory’s Space Vehicles Directorate. ACKNOWLEDGEMENTS FROM THE EDITORS Dr. David A. Hardy & Peter Garretson The authors wish to express their deep gratitude and appreciation to New Space New Mexico for hosting the State of the Space Industrial Base 2020 Virtual Solutions Workshop; and to all the attendees, especially those from the commercial space sector, who spent valuable time under COVID-19 shelter-in-place restrictions contributing their observations and insights to each of the six working groups. -
Before the Federal Communications Commission Washington, DC 20554 Application of Capella Space Corp. for Authority to Launch
Before the Federal Communications Commission Washington, DC 20554 Application of Capella Space Corp. Call Sign: For Authority to Launch File No. _____________________ and Operate a Non-Geostationary Orbit Satellite System in the Earth Exploration Satellite Service Application of Capella Space Corp. for Authority to Launch and Operate a Non-Geostationary Orbit Satellite System in the Earth Exploration Satellite Service William M. Wiltshire Dan Connors Paul Caritj General Counsel HARRIS, WILTSHIRE & GRANNIS LLP CAPELLA SPACE CORP. ൡ൩ൡ൩ M Street, N.W. ൣ൨ Shotwell Street Suite ൨ൠൠ San Francisco, CA ൩ൡൡൠ Washington, DC ൢൠൠൣ൦ ൡ-൨ൡ-൧ൢ൧ tel ൢൠൢ-൧ൣൠ-ൡൣൠൠ tel ൢൠൢ-൧ൣൠ-ൡൣൠൡ fax Counsel to Capella Space Corp. Sept ൡ, ൢൠൢൠ Table of Contents Background and description of services .......................................................................... 1 Description of system facilities and operations ............................................................ 3 A. Space segment ........................................................................................................... 3 B. Orbital information ................................................................................................... 3 C. Spectrum ................................................................................................................... 4 D. Ground segment and operations................................................................................ 6 E. Launch schedule ....................................................................................................... -
Proliferated Commercial Satellite Constellations Implications for National Security
Soyuz-2.1b rocket lifts off from Baikonur Cosmodrome in Kazakhstan, together with 34 OneWeb communication satellites (Courtesy Roscosmos) Proliferated Commercial Satellite Constellations Implications for National Security By Matthew A. Hallex and Travis S. Cottom he falling costs of space launch Commercial space actors—from tiny of these endeavors will result in new and the increasing capabilities of startups to companies backed by bil- space-based services, including global T small satellites have enabled the lions of dollars of private investment— broadband Internet coverage broadcast emergence of radically new space archi- are pursuing these new architectures from orbit and high-revisit overhead tectures—proliferated constellations to disrupt traditional business models imagery of much of the Earth’s surface. made up of dozens, hundreds, or even for commercial Earth observation and The effects of proliferated con- thousands of satellites in low orbits. satellite communications. The success stellations will not be confined to the commercial sector. The exponential in- crease in the number of satellites on orbit Matthew A. Hallex is a Research Staff Member at the Institute for Defense Analyses. Travis S. Cottom is will shape the future military operating a Research Associate at the Institute for Defense Analyses. environment in space. The increase in 20 Forum / Proliferated Commercial Satellite Constellations JFQ 97, 2nd Quarter 2020 the availability of satellite imagery and Table 1. Planned Proliferated Communications Constellations communications bandwidth on the open Satellite Operator Proposed Satellites Satellite Design Life (Years) market will also affect the operating environment in the ground, maritime, OneWeb > 2,000 7–10 and air domains, offering new capabilities SpaceX Starlink ~ 12,000 5–7 that can address hard problems facing Boeing > 3,000 10–15 the U.S. -
The 2019 Joint Agency Commercial Imagery Evaluation—Land Remote
2019 Joint Agency Commercial Imagery Evaluation— Land Remote Sensing Satellite Compendium Joint Agency Commercial Imagery Evaluation NASA • NGA • NOAA • USDA • USGS Circular 1455 U.S. Department of the Interior U.S. Geological Survey Cover. Image of Landsat 8 satellite over North America. Source: AGI’s System Tool Kit. Facing page. In shallow waters surrounding the Tyuleniy Archipelago in the Caspian Sea, chunks of ice were the artists. The 3-meter-deep water makes the dark green vegetation on the sea bottom visible. The lines scratched in that vegetation were caused by ice chunks, pushed upward and downward by wind and currents, scouring the sea floor. 2019 Joint Agency Commercial Imagery Evaluation—Land Remote Sensing Satellite Compendium By Jon B. Christopherson, Shankar N. Ramaseri Chandra, and Joel Q. Quanbeck Circular 1455 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials JACIE as noted in the text. -
The Historyof Spaceflight
CHAPTER15 THEHISTORY AND HISTORIOGRAPHYOF NATIONALSECURITY SPACE’ Stephen B. Johnson e intent of this essay is to provide space historians with an overview of Th.the issues and sources of national security space so as to identify those areas that have been underserved. Frequently, ballistic missiles are left out of space history, as they only pass through space instead of remaining in space like satellites. I include ballistic missiles for several reasons, not the least of which is that they pass through space en route to their targets. Space programs originated in the national security (NS) arena, and except for a roughly 15-year period from the early 1960s through the mid-l970s, NS space expenditures in the United States (U.S.), let alone the Union of Soviet Socialist Republics (USSR), have equaled or exceeded those of civilian pro- grams. Despite this reality, the public nature of government-dominated civil- ian programs and issues of security classifications have kept NS space out of the limelight. The recent declassification of the early history of the National Reconnaissance Office (NRO) and the demise of the Soviet Union have led to a recent spate of publications that have uncovered much of the “secret history” of the early Cold War. Nonetheless, much of NS space history has received little attention from historians. One feature of military organizations that is of great value for historians is their penchant to document their histories, and space organizations are no exception. Most military organizations have historians assigned to them, with professional historians at many of the positions documenting events as they occur. -
Space Security 2010
SPACE SECURITY 2010 spacesecurity.org SPACE 2010SECURITY SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security 2010 ISBN : 978-1-895722-78-9 © 2010 SPACESECURITY.ORG Edited by Cesar Jaramillo Design and layout: Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Artist rendition of the February 2009 satellite collision between Cosmos 2251 and Iridium 33. Artwork courtesy of Phil Smith. Printed in Canada Printer: Pandora Press, Kitchener, Ontario First published August 2010 Please direct inquires to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 708 Fax: 519-888-0018 Email: [email protected] iv Governance Group Cesar Jaramillo Managing Editor, Project Ploughshares Phillip Baines Department of Foreign Affairs and International Trade, Canada Dr. Ram Jakhu Institute of Air and Space Law, McGill University John Siebert Project Ploughshares Dr. Jennifer Simons The Simons Foundation Dr. Ray Williamson Secure World Foundation Advisory Board Hon. Philip E. Coyle III Center for Defense Information Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research Dr. John Logsdon The George Washington University (Prof. emeritus) Dr. Lucy Stojak HEC Montréal/International Space University v Table of Contents TABLE OF CONTENTS PAGE 1 Acronyms PAGE 7 Introduction PAGE 11 Acknowledgements PAGE 13 Executive Summary PAGE 29 Chapter 1 – The Space Environment: