An Abstract of the Thesis Of

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract of the Thesis Of AN ABSTRACT OF THE THESIS OF Lilah Gonen for the degree of Master of Science in Botany and Plant Pathology presented on December 9, 2020. Title: Community Ecology of Foliar Fungi and Oomycetes of Pseudotsuga menziesii on the Pacific Northwest Coast. Abstract approved: ______________________________________________________________________ Andy Jones Jared LeBoldus Pseudotsuga menziesii var. menziesii (coast Douglas-fir) is a tree of ecological, economic, and cultural value in its native North American Pacific Northwest (PNW) distribution. P. menziesii is host to a variety of well- documented endophytic foliar microorganisms, including the fungus Nothophaeocryptopus gaeumannii, the causal agent of Swiss needle cast (SNC), and the oomycete Phytophthora pluvialis, which causes cryptic disease symptoms in P. menziesii. Little is understood about how entire foliar microbial communities are structured by geography, climate, and host lineage, nor how foliar fungi and oomycetes interact at the tree level. This study used a large-scale reciprocal transplant experiment, next-generation sequencing (NGS), and culture-based methods to characterize the diversity and structure of foliar fungi and oomycetes of P. menziesii across three sites on the PNW coast. Fungal community composition within trees was structured by host location (p = 1e-4, 1.5e-3) as well as interactions between host location and lineage (p = 0.02, 6.4e- 3, 8e-4). Oomycete communities were dominated by a single OTU, assigned to Phytophthora cacuminis, a recently described species in Australia. An undescribed Pythium species was isolated in culture from 18 trees throughout the study sites. Generalized linear mixed models revealed that fungal community richness was positively correlated to oomycete community richness among trees (estimated coefficient = 0.14, p = 8.3e-16), and that presence of P. cacuminis negatively predicted presence of N. gaeumannii (estimated coefficient = -0.65, p = 0.03). This raises questions about P. cacuminis’ presence and origins in the PNW as well as its effects on tree health. This study is among the first to use NGS to describe P. menziesii’s foliar fungal community and to characterize nonpathogenic oomycetes residing in P. menziesii needle tissue. It illustrates the need for further experimental research to identify biotic drivers of microbial community assembly, as well as the downstream implications for forest management. ©Copyright by Lilah Gonen December 9, 2020 All Rights Reserved Community Ecology of Foliar Fungi and Oomycetes of Pseudotsuga menziesii on the Pacific Northwest Coast by Lilah Gonen A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented December 9, 2020 Commencement June 2021 Master of Science thesis of Lilah Gonen presented on December 9, 2020 APPROVED: Major Professor, representing Botany and Plant Pathology Head of the Department of Botany and Plant Pathology Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Lilah Gonen, Author ACKNOWLEDGEMENTS First, I must thank my advisors and committee: Jared LeBoldus, Andy Jones, Posy Busby, and Dave Shaw for your mentorship, patience, respect, and, importantly, funding of my time and energy at OSU. I feel very lucky to now have the intellectual foundations of both a forest ecologist and pathologist and I do believe I’ll take the diversity of thought and methodology that these four have instilled in me far into my career. Second, to the lab members who offered me so much in my two plus years at OSU. Chiefly, Kelsey Søndreli, for keeping the lab clean and functional, ordering most of my equipment, and patiently helping with virtually all of my laboratory tasks; Patrick Bennett, for going on an overnight sampling trip with me to Washington, driving the whole way, and keeping a good attitude despite falling a lot; Devin Leopold, for your instrumental help in bioinformatics; Paul Reeser and Wendy Sutton, for being some of the best resources in the world (truly) on oomycete biology, culturing, and sequencing; Kyle Gervers, for your enthusiasm in all things microbiome, and your involvement in everything from sampling trips to troubleshooting library prep to diving deeply into ecological theory; Kayla Delventhal for the statistical breakthroughs, commiseration, and friendship; Javier Tabima, for teaching me many things including how to write a manuscript, how to use the cluster, and how to ask stupid questions; and finally Shawn McMurtrey, for washing all of our dishes and making me laugh. Third, to the US Forest Service for granting me access to the SSMT sites, assisting me in the field, and sharing valuable data with me. Those folks include Brad St. Clair, Connie Harrington, Chris Poklemba, Beverly Luke, Leslie Brody, and Dave Thornton. Fourth, to the lifelong friendships I made at Shrub House: Kat, Cedar, Meredith, and Allie. Fifth, to Lauren, Livi, and dear Gordon, for the important stuff. And finally, a profound acknowledgement to the Kalapuya people and the Confederated Tribes of the Grand Ronde and Siletz, on whose stolen land I was raised and OSU sits. TABLE OF CONTENTS Page 1. General Introduction ........................................................................................................................ 1 1.1 Literature Cited ................................................................................................................12 2. Community Ecology of Foliar Fungi and Oomycetes of Pseudotsuga menziesii on the Pacific Northwest Coast ..............................................................................................................20 2.1 Abstract ...............................................................................................................................21 2.2 Introduction ......................................................................................................................22 2.3 Materials and methods..................................................................................................28 2.3.1 Study sites ........................................................................................................28 2.3.2 Sample collection...........................................................................................29 2.3.3 Culturing and sequencing oomycetes ...................................................30 2.3.4 Sequencing fungal and oomycete communities ................................33 2.3.5 Bioinformatics ................................................................................................35 2.3.6 Statistical analysis .........................................................................................37 2.4 Results .................................................................................................................................40 2.4.1 Oomycete isolates .........................................................................................40 2.4.2 Community composition of fungi and oomycetes ............................41 TABLE OF CONTENTS (Continued) 2.4.3 Fungal diversity in response to biotic and abiotic predictors .....43 2.5 Discussion ..........................................................................................................................45 2.5.1 Foliar fungal communities are structured by local environmental conditions ....................................................................................................................45 2.5.2 Foliar oomycete communities are dominated by one OTU...........50 2.5.3 Presence of foliar fungi can be predicted by the presence of foliar oomycetes ...................................................................................................................52 2.6 Conclusions ........................................................................................................................54 2.7 Literature Cited ................................................................................................................57 2.8 Figures .................................................................................................................................67 2.9 Tables ...................................................................................................................................82 3. General Conclusions ........................................................................................................................86 3.1 Literature Cited ................................................................................................................92 4. Bibliography .......................................................................................................................................96 LIST OF FIGURES Figure Page 2.1 Locations of seed source region (SSR) (left) and study sites (right). Seed was collected from 2 maternal trees (inset) in each of 5 locations within each SSR. Each SSR was composed of 10 lines of half-siblings (families). Adapted from Wilhelmi et al. (2017)........................................................................................................................................................67 2.2 Example of study site layout. Each site was divided into 4 blocks, where each SSR was randomly assigned a plot. Each SSR plot contained 2 replicates of the 10
Recommended publications
  • Pseudotsuga Menziesii)
    120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.
    [Show full text]
  • Plant, Microbiology and Genetic Science and Technology Duccio
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Florence Research DOCTORAL THESIS IN Plant, Microbiology and Genetic Science and Technology section of " Plant Protection" (Plant Pathology), Department of Agri-food Production and Environmental Sciences, University of Florence Phytophthora in natural and anthropic environments: new molecular diagnostic tools for early detection and ecological studies Duccio Migliorini Years 2012/2015 DOTTORATO DI RICERCA IN Scienze e Tecnologie Vegetali Microbiologiche e genetiche CICLO XXVIII COORDINATORE Prof. Paolo Capretti Phytophthora in natural and anthropic environments: new molecular diagnostic tools for early detection and ecological studies Settore Scientifico Disciplinare AGR/12 Dottorando Tutore Dott. Duccio Migliorini Dott. Alberto Santini Coordinatore Prof. Paolo Capretti Anni 2012/2015 1 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text. Duccio Migliorini 29/11/2015 A copy of the thesis will be available at http://www.dispaa.unifi.it/ Dichiarazione Con la presente affermo che questa tesi è frutto del mio lavoro e che, per quanto io ne sia a conoscenza, non contiene materiale precedentemente pubblicato o scritto da un'altra persona né materiale che è stato utilizzato per l’ottenimento di qualunque altro titolo o diploma dell'Università o altro istituto di apprendimento, a eccezione del caso in cui ciò venga riconosciuto nel testo.
    [Show full text]
  • AGROFOR International Journal
    AGROFOR International Journal PUBLISHER University of East Sarajevo, Faculty of Agriculture Vuka Karadzica 30, 71123 East Sarajevo, Bosnia and Herzegovina Telephone/fax: +387 57 340 401; +387 57 342 701 Web: www.agrofor.rs.ba; Email: [email protected] EDITOR-IN-CHIEF Vesna MILIC (BOSNIA AND HERZEGOVINA) MANAGING EDITORS Dusan KOVACEVIC (SERBIA); Sinisa BERJAN (BOSNIA AND HERZEGOVINA); Noureddin DRIOUECH (ITALY) EDITORIAL BOARD Dieter TRAUTZ (GERMANY); Hamid El BILALI (ITALY); William H. MEYERS (USA); Milic CUROVIC (MONTENEGRO); Tatjana PANDUREVIC (BOSNIA AND HERZEGOVINA); Alexey LUKIN (RUSSIA); Machito MIHARA (JAPAN); Abdulvahed KHALEDI DARVISHAN (IRAN); Viorel ION (ROMANIA); Novo PRZULJ (BOSNIA AND HERZEGOVINA); Steve QUARRIE (UNITED KINGDOM); Hiromu OKAZAWA (JAPAN); Snezana JANKOVIC (SERBIA); Naser SABAGHNIA (IRAN); Sasa ORLOVIC (SERBIA); Sanja RADONJIC (MONTENEGRO); Junaid Alam MEMON (PAKISTAN); Vlado KOVACEVIC (CROATIA); Marko GUTALJ (BOSNIA AND HERZEGOVINA); Dragan MILATOVIC (SERBIA); Pandi ZDRULI (ITALY); Zoran JOVOVIC (MONTENEGRO); Vojislav TRKULJA (BOSNIA AND HERZEGOVINA); Zoran NJEGOVAN (SERBIA); Adriano CIANI (ITALY); Aleksandra DESPOTOVIC (MONTENEGRO); Igor DJURDJIC (BOSNIA AND HERZEGOVINA); Stefan BOJIC (BOSNIA AND HERZEGOVINA); Julijana TRIFKOVIC (BOSNIA AND HERZEGOVINA) TECHNICAL EDITORS Milan JUGOVIC (BOSNIA AND HERZEGOVINA) Luka FILIPOVIC (MONTENEGRO) Frequency: 3 times per year Number of copies: 300 ISSN 2490-3434 (Printed) ISSN 2490-3442 (Online) CONTENT BIOMASS PRODUCTION OF MORINGA (Moringa oleifera L.) AT VARIOUS
    [Show full text]
  • Phylogenetic Identification of Pathogenic and Endophytic Fungal Populations in West Coast Douglas-Fir (Pseudotsuga Menziesii) Foliage
    AN ABSTRACT OF THE THESIS OF Hazel A. Daniels for the degree of Master of Science in Sustainable Forest Management presented on September 19, 2017. Title: Phylogenetic Identification of Pathogenic and Endophytic Fungal Populations in West Coast Douglas-fir (Pseudotsuga menziesii) Foliage. Abstract approved: _____________________________________________________ James D. Kiser Douglas-fir provides social, economic, and ecological benefits in the Pacific Northwest (PNW). In addition to timber, forests support abundant plant and animal biodiversity and provide socioeconomic viability for many rural communities. Products derived from Douglas- fir account for approximately 17% of the U.S. lumber output with an estimated value of $1.9 billion dollars. Employment related to wood production accounts for approximately 61,000 jobs in Oregon. Timberland also supports water resources, recreation, and wildlife habitat. Minor defoliation has previously been linked to Swiss Needle Cast, associated with the fungus Phaeocryptopus gaeumannii, however, unprecedented large-scale defoliation began in the 1990s and has increased since, leading to decreased growth and yield. Areas affected areas by SNC exceed 500,000 acres in Oregon. Defoliation symptoms are inconsistent with predicted effects of P. gaeumannii, and targeted chemical control has had mixed results. While the microbiome community of conifer needles is poorly described to date, we hypothesize the full interstitial microbiome complex is involved in disease response in conifers. There are at least three known pathogenic endophytes of Douglas-fir, in addition to a large number of endophytes with undetermined host relationships. In order to understand the mechanistic dynamics of needle cast, it is necessary to uncover the underlying cause of the symptoms.
    [Show full text]
  • Douglas-Fir What Science Can Tell Us – an Option for Europe
    Douglas-fir What Science Can Tell Us – an option for Europe Heinrich Spiecker, Marcus Lindner and Johanna Schuler (editors) What Science Can Tell Us 9 2019 What Science Can Tell Us Lauri Hetemäki, Editor-In-Chief Georg Winkel, Associate Editor Pekka Leskinen, Associate Editor Minna Korhonen, Managing Editor The editorial office can be contacted at [email protected] Layout: Grano Oy / Jouni Halonen Printing: Grano Oy Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute. ISBN 978-952-5980-65-3 (printed) ISBN 978-952-5980-66-0 (pdf) Douglas-fir What Science Can Tell Us – an option for Europe Heinrich Spiecker, Marcus Lindner and Johanna Schuler (editors) Funded by the Horizon 2020 Framework Programme of the European Union This publication is based upon work from COST Action FP1403 NNEXT, supported by COST (European Cooperation in Science and Technology). www.cost.eu Contents Preface ................................................................................................................................9 Acknowledgements...........................................................................................................11 Executive summary ...........................................................................................................13 1. Introduction ...................................................................................................................17 Heinrich Spiecker and Johanna Schuler 2. Douglas-fir
    [Show full text]
  • 1962 TABLE of CONTENTS Page 1 Forward 2 Opening Remarks Chairman J
    / HOME • • • Proceedings of the Tenth Western Internat1onal Forest Diseas e Work Conference Victoria, Alberta October 1962 TABLE OF CONTENTS Page 1 Forward 2 Opening Remarks Chairman J. R. Parmeter 2 Address of Welcome R. E. Foster 4 Greetings From Mexico Julio Inda Riquelm e 4 A Review of Some Highlights in Research on Ectotrophic Mycorrhizae J. C. Hopkin s 6 Tissue Saprophytes and the Possibility of Biological Control of Some Tree Diseases John E. Bier 9 An Assessment of the Significance of Disease in Dougla s-Fir Plantations R. E. Foster 10 Foliage Diseases of Young Douglas Fir Wolf G. Ziller 14 What We Should Know About Root Systems R. G. McMinn 20 Fungus Interactions in Wood Decay R. Bourchier 21 Interactions of Fungi Imperfecti, Ascomycetes and Wood-Decaying Fungi E. I. Whittaker 27 Temperature and the Distribution of Fungi in Lodgepole Pine Slash A. A. Loman 31 Fungus Interactions On Wood Decay R. Bourchier 33 Forest Disease Sampling in Douglas-Fir Plantations R. E. Foster 34 Needle-Cast and Needle Blight Fungi Attacking Species of Pin us In Southwestern Forests Paul D. Keener 40 The Story ofRosellinia and Boletus (An Epic) James L. Haskell 't APPENDICES ' I r 43 Active Projects, New and Terminated ·, I I 52 New or Modified Techniques \ 54 Public;ations 61 Minutes of the Business Meeting 65 Committee Report on Status and Needs of Research on Dwarf Mistletoes 76 Membership List SPECIAL REPORT 85 Summary of Experiments on Direct Chemical Control of Some Forest Diseases in Weste~ North America C. R. Quick , et al. , ( .,, ,I .
    [Show full text]
  • Endophytic Fungi in Forest Trees: Are They Mutualists?
    fungal biology reviews 21 (2007) 75–89 journal homepage: www.elsevier.com/locate/fbr Review Endophytic fungi in forest trees: are they mutualists? Thomas N. SIEBER* Forest Pathology and Dendrology, Institute of Integrative Biology (IBZ), ETH Zurich, CH-8092 Zurich, Switzerland article info abstract Article history: Forest trees form symbiotic associations with endophytic fungi which live inside healthy Received 26 February 2007 tissues as quiescent microthalli. All forest trees in temperate zones host endophytic fungi. Received in revised form The species diversity of endophyte communities can be high. Some tree species host more 24 April 2007 than 100 species in one tissue type, but communities are usually dominated by a few host- Accepted 15 May 2007 specific species. The endophyte communities in angiosperms are frequently dominated by Published online 14 June 2007 species of Diaporthales and those in gymnosperms by species of Helotiales. Divergence of angiosperms and gymnosperms coincides with the divergence of the Diaporthales and the Keywords: Helotiales in the late Carboniferous about 300 million years (Ma) ago, indicating that the Antagonism Diaporthalean and Helotialean ancestors of tree endophytes had been associated, respec- Apiognomonia errabunda tively, with angiosperms and gymnosperms since 300 Ma. Consequently, dominant tree Biodiversity endophytes have been evolving with their hosts for millions of years. High virulence of Commensalism such endophytes can be excluded. Some are, however, opportunists and can cause disease Evolution after the host has been weakened by some other factor. Mutualism of tree endophytes is Fomes fomentarius often assumed, but evidence is mostly circumstantial. The sheer impossibility of producing Mutualism endophyte-free control trees impedes proof of mutualism.
    [Show full text]
  • Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system.
    [Show full text]
  • Pseudotsuga Menziesii (Mirbel) Franco Taxonomy Author, Year Franco, 1950 Synonym Pseudotsuga Taxifolia Britt., Pseudotsuga Douglasii Carr
    Forest Ecology and Forest Management Group Tree factsheet images at pages 3, 4 Pseudotsuga menziesii (Mirbel) Franco taxonomy author, year Franco, 1950 synonym Pseudotsuga taxifolia Britt., Pseudotsuga douglasii Carr. Family Pinaceae Eng. Name Douglas Fir, Oregon Pine Dutch name Douglasspar, Douglas subspecies - varieties P. menziesii var. menziesii – Coastal Douglas Fir P. menziesii var. glauca – Rocky Mountain Douglas Fir hybrids - cultivars, frequently planted - references Earle, C.J. Gymnosperm database www.conifers.org USDA Forest Service http://www.fs.fed.us/database/feis/plants/tree/index.html Veen, B. 1951. Proefschrift. Herkomstenonderzoek van de Douglas in Nederland Nederlands Bosbouwtijdschrift. 1998, 60-5/6. artikelenserie Douglas Studiekringdag 1987. Kuiper, L.C. 1987. Douglas (in Dutch). in: Schmidt, P. 1987. Nederlandse boomsoorten I, Syllabus Vakgroep Bosbouw Landbouwuniversiteit Wageningen Plants for a Future Database; www.pfaf.org/index.html morphology crown habit pyramidal max. height (m) In the Netherlands: 48 in Europe: 70 in USA: 100 max. dbh (cm) >400 (USA) actual size USA year …, d(130) 423, h 73.8, Red Creek Fir, Port Renfrew, Vancouver Island year …, d(130) 408, h 85.6, Tichipawa tree, Lake Quinault, Olympic National Forest, Washington year …, d(130) 354, h 99.4, Brummit Fir, E. Fork Brummit Creek, Coos County, Oregon actual size Europe year 1882, d …, h 62, Reelig Glen Wood, Moniack year 1842, d (…) , h 62, Dunans Estate, Argyll year 1875, d (…) 198, h 61, Ardkinglas Woodland Garden, Loch Fyne, Cairndow, Argyll, Scotland actual size Netherlands year 1845, d(130) 103, h 30. Putten, Schovenhorst, Gelderland year 1860-1870, d(130) 126, h 46,7.
    [Show full text]
  • Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal Downloaded From
    RESEARCH ARTICLE Ecological and Evolutionary Science crossm Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal Downloaded from Jamie McGowan, David A. Fitzpatrick Department of Biology, Genome Evolution Laboratory, Maynooth University, Maynooth, Co. Kildare, Ireland ABSTRACT The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate-Rhizaria (SAR) supergroup and include ecologically sig- Received 11 September 2017 Accepted 2 nificant animal and plant pathogens. Oomycetes secrete large arsenals of effector November 2017 Published 22 November 2017 proteins that degrade host cell components, manipulate host immune responses, Citation McGowan J, Fitzpatrick DA. 2017. and induce necrosis, enabling parasitic colonization. This study investigated the ex- Genomic, network, and phylogenetic analysis http://msphere.asm.org/ pansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, in- of the oomycete effector arsenal. mSphere 2:e00408-17. https://doi.org/10.1128/mSphere cluding Albuginales, Peronosporales, Pythiales, and Saprolegniales species. Our results .00408-17. highlight the large expansions of effector protein families, including glycoside hydro- Editor Aaron P. Mitchell, Carnegie Mellon lases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species- University specific expansions, including expansions of chitinases in Aphanomyces astaci and Copyright © 2017 McGowan and Fitzpatrick. Pythium oligandrum, were detected. Novel effectors which may be involved in sup- This is an open-access article distributed under the terms of the Creative Commons Attribution pressing animal immune responses in Ap. astaci and Py. insidiosum were also identi- 4.0 International license. fied. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were Address correspondence to David A.
    [Show full text]
  • Phytophthora in Forests and Natural Ecosystems
    Proceedings of the 8th Meeting of the International Union of Forestry Research Organisations IUFRO Working Party S07-02-09 Phytophthora in Forests and Natural Ecosystems Hanoi-Sapa Viet Nam 18 - 25 March 2017 www.iufrophytophthora2017.org Version 2: Revised June 2017 Index: Sponsors ....................................................................................................................................................................... iv Conference Program ..................................................................................................................................................... v Session 1: Management and Control ........................................................................................................................... 1 Session 2: Community Engagement ........................................................................................................................... 10 Session 3: Diversity ..................................................................................................................................................... 19 Section 4: Ecology ...................................................................................................................................................... 23 Session 5: Genetics ..................................................................................................................................................... 27 Session 6: Dispersal Pathways/ Urban Horticulture ..................................................................................................
    [Show full text]
  • BS1950 Phytophthora Review FINAL REPORT
    The Potential Impacts of Phytophthora Species on Production of Kiwifruit and Kiwiberry in New Zealand | A literature review | Steve Woodward Eric Boa University of Aberdeen, UK April 2019 Zespri Innovation Project BS1950 Final report 8 April 2019 Contents 1. Executive summary ....................................................................................... 2 2. General introduction .................................................................................... 4 3. Review outline and expected results ................................................... 4 4. Literature searches ......................................................................................... 5 5. Global overview of Phytophthora on Actinidia ................................. 6 6. La Moria (vine decline), Phytophthora and associated diseases of kiwifruit vines in Italy. ....................................................................... 8 7. Phytophthora species present in New Zealand ................................ 11 8. Climatic suitability of New Zealand for Phytophthora ................. 16 9. Biosecurity in New Zealand ...................................................................... 18 10. Main findings from three Phytophthora case studies .................. 25 11. Managing Phytophthora disease risks ................................................... 27 12. Further research and actions. .................................................................. 29 ANNEX 1 Taxonomy of Phytophthora and related genera .................................................
    [Show full text]