Phylogenetic Identification of Pathogenic and Endophytic Fungal Populations in West Coast Douglas-Fir (Pseudotsuga Menziesii) Foliage

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Identification of Pathogenic and Endophytic Fungal Populations in West Coast Douglas-Fir (Pseudotsuga Menziesii) Foliage AN ABSTRACT OF THE THESIS OF Hazel A. Daniels for the degree of Master of Science in Sustainable Forest Management presented on September 19, 2017. Title: Phylogenetic Identification of Pathogenic and Endophytic Fungal Populations in West Coast Douglas-fir (Pseudotsuga menziesii) Foliage. Abstract approved: _____________________________________________________ James D. Kiser Douglas-fir provides social, economic, and ecological benefits in the Pacific Northwest (PNW). In addition to timber, forests support abundant plant and animal biodiversity and provide socioeconomic viability for many rural communities. Products derived from Douglas- fir account for approximately 17% of the U.S. lumber output with an estimated value of $1.9 billion dollars. Employment related to wood production accounts for approximately 61,000 jobs in Oregon. Timberland also supports water resources, recreation, and wildlife habitat. Minor defoliation has previously been linked to Swiss Needle Cast, associated with the fungus Phaeocryptopus gaeumannii, however, unprecedented large-scale defoliation began in the 1990s and has increased since, leading to decreased growth and yield. Areas affected areas by SNC exceed 500,000 acres in Oregon. Defoliation symptoms are inconsistent with predicted effects of P. gaeumannii, and targeted chemical control has had mixed results. While the microbiome community of conifer needles is poorly described to date, we hypothesize the full interstitial microbiome complex is involved in disease response in conifers. There are at least three known pathogenic endophytes of Douglas-fir, in addition to a large number of endophytes with undetermined host relationships. In order to understand the mechanistic dynamics of needle cast, it is necessary to uncover the underlying cause of the symptoms. The first step is establishing a baseline inventory of endophytes in PNW Douglas-fir needles. Two-year old needles were collected from two sites each in Oregon and Washington, for a total of four sites. Study sites varied in elevation (185 – 860m) and mean annual precipitation (250 – 1,575 mm/year). DNA extraction and sequencing revealed 46 unique isolates from 39 taxa in Douglas-fir needles gathered from four test sites in Oregon and Washington. Rates of infection for all needles was 39%, with infection ranging from 5% to 60% among seed sources. The results suggest that the probability of endophyte occurrence at the cool, wet site, was 2.8 (p < 0.0001) times higher than the warm, dry site, and 2.2 (p = 0.0007) times higher than the warm, wet site. Non-local needles at the warm, dry site were 13.6 (p < 0.0001) times more likely to be infected than needles from the local seed source. The environmental variable that seemed most positively correlated with endophyte presence was winter relative humidity. There was strong evidence for the influence of seed source type on the relationship between continentality (the difference between mean warmest month and mean coldest month temperatures) and mean average number of endophytes. Long-term silvicultural management of PNW forests will benefit as a result of this study. It is the first study to use modern molecular techniques to uncover the fungal endophytic communities of West-Coast Douglas-fir foliage. It is vital to understand the complete etiology of the needle cast disease affecting Douglas-fir, and whether to focus on mitigating a single-species pathogen, or a number of different pathogens. Because forests are a long-term strategy, it is critical to understand the ecological implications of disease in this important tree species. ©Copyright by Hazel A. Daniels September 19, 2017 All Rights Reserved Phylogenetic Identification of Pathogenic and Endophytic Fungal Populations in West Coast Douglas-fir (Pseudotsuga menziesii) Foliage. by Hazel A. Daniels A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented September 19, 2017 Commencement June 2018 Master of Science thesis of Hazel A. Daniels presented on September 19, 2017 APPROVED: Major Professor, representing Sustainable Forest Management Head of the Department of Forest Engineering, Resources & Management Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Hazel A. Daniels, Author ACKNOWLEDGEMENTS There are probably a thousand people who have helped me reach this point in my life; I know I haven’t walked this road alone. Chief among those is Jim Kiser, my advisor and advocate, who has empowered me to think big (and small) and aim high. A good mentor, one whose core values align with your own, and with whom you can be honest in the face of despair, is priceless. For this reason and others, I feel especially fortunate to have Jim on my side. I am also fortunate to have Jeff Morrell, Dave Shaw, and Jay Pscheidt as committee members. Their collective experience, guidance, and helpful questions have made me a better researcher (I hope!). My thanks to Connie Harrington, USFS, for granting me access to the Seed Source Movement Trial sites in my study, and helping me stay warm at the Washington sites. Thanks also to Starker Forests, Inc. for allowing me to access one of these sites on their property, and Chris Poklemba, USFS, for accompanying me to Southern Oregon. Thanks to Jed Cappalazzi for his tireless enthusiasm and goodwill, despite my constant barrage of questions and various spills in the lab. He welcomed me into the Morrell lab, and helped me learn new techniques and keep better records. My sincere appreciation to Amy Klocko, Steve Strauss, Anna Magnusen, and Michael Freitag for allowing me the use of their lab space and hardware. Thanks also to Sarath Vega Gutiérrez, Daniel Way, Daniel Trebelhorn for assistance in DNA extraction, to Lisa Ganio and Ariel Muldoon for statistical advising, to Dave Shaw and Glenn Howe for support and advice, and to Jared LeBoldus and his entire lab group for being so welcoming after I lost my office. I’d especially like to thank the College of Forestry, Department of Forest Engineering, Resources and Management for their support of my research, and Madison Dudley, Erika Hanna, and Chelsea Durling for being absolute rock stars. I thank you for the often- unrecognized administrative and care work that keeps our department running. I am grateful to Jennifer Franklin, Ðenita Hadžiabdić Guerry, and Mark Windham and the University of Tennessee, for seeing and fostering my inner forest pathologist. I dedicate this thesis in part to the memory of Lisa Vito, who kept me company in the lab, taught me how to hold a pipette, and made every day full of laughter. I also dedicate this thesis in part to my mother, Beth Daniels, and aunt, Dianne Muncey. Your love and encouragement have always made me feel invincible. Thanks to my patient and forgiving partner, Josh Goben, who always follows me when I wander into the woods, and to Ashnod and Jem for comforting me in the way only cats can do. I also thank my CGE family, who help keep my spirits high with solidarity, potlucks, and radical conversation. Finally, I gratefully recognize and give thanks to the Kalapuya people, on whose land this university sits. CONTRIBUTION OF AUTHORS Jim Kiser and Hazel Daniels conceived and designed the study. Ariel Muldoon and Connie Harrington helped with some aspects of study design. Hazel Daniels collected, analyzed, and interpreted data, with the assistance of Jim Kiser. Hazel Daniels wrote this thesis, with critical revisions by Jim Kiser. TABLE OF CONTENTS Page 1 General introduction ................................................................................................................ 1 1.1 What are endophytes ............................................................................................... 4 1.2 Endophyte classifications ........................................................................................ 5 1.3 Endophyte infections ............................................................................................... 7 1.4 Other roles of endophytes ....................................................................................... 9 1.5 Endophytes as pathogens ..................................................................................... 12 1.6 Endophytic pathogens of Douglas-fir ................................................................. 13 1.7 Literature cited ........................................................................................................ 23 2 Phylogenetic identification of pathogenic and endophytic fungal populations in West Coast Douglas-fir (Pseudotsuga menziesii) foliage .................................................... 32 2.1 Introduction ............................................................................................................ 32 2.2 Objectives .................................................................................................................. 36 2.3 Methods ................................................................................................................... 37 2.3.1 Traditional plate culturing .................................................................... 41 2.3.2 DNA extraction ...................................................................................... 43 2.3.3 Data Analysis ...........................................................................................
Recommended publications
  • Fungi Associated with Ips Acuminatus (Coleoptera: Curculionidae) in Ukraine with a Special Emphasis on Pathogenicity of Ophiostomatoid Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 77–85, 2017 http://www.eje.cz doi: 10.14411/eje.2017.011 ORIGINAL ARTICLE Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species KATERYNA DAVYDENKO 1, 2, RIMVYDAS VASAITIS 2 and AUDRIUS MENKIS 2 1 Ukrainian Research Institute of Forestry & Forest Melioration, Pushkinska st. 86, 61024 Kharkiv, Ukraine; e-mail: [email protected] 2 Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden; e-mails: [email protected], [email protected] Key words. Coleoptera, Curculionidae, pine engraver beetle, Scots pine, Ips acuminatus, pathogens, Ophiostoma, Diplodia pinea, insect-fungus interaction Abstract. Conifer bark beetles are well known to be associated with fungal complexes, which consist of pathogenic ophiostoma- toid fungi as well as obligate saprotroph species. However, there is little information on fungi associated with Ips acuminatus in central and eastern Europe. The aim of the study was to investigate the composition of the fungal communities associated with the pine engraver beetle, I. acuminatus, in the forest-steppe zone in Ukraine and to evaluate the pathogenicity of six associated ophiostomatoid species by inoculating three-year-old Scots pine seedlings with these fungi. In total, 384 adult beetles were col- lected from under the bark of declining and dead Scots pine trees at two different sites. Fungal culturing from 192 beetles resulted in 447 cultures and direct sequencing of ITS rRNA from 192 beetles in 496 high-quality sequences.
    [Show full text]
  • Pseudotsuga Menziesii)
    120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.
    [Show full text]
  • AGROFOR International Journal
    AGROFOR International Journal PUBLISHER University of East Sarajevo, Faculty of Agriculture Vuka Karadzica 30, 71123 East Sarajevo, Bosnia and Herzegovina Telephone/fax: +387 57 340 401; +387 57 342 701 Web: www.agrofor.rs.ba; Email: [email protected] EDITOR-IN-CHIEF Vesna MILIC (BOSNIA AND HERZEGOVINA) MANAGING EDITORS Dusan KOVACEVIC (SERBIA); Sinisa BERJAN (BOSNIA AND HERZEGOVINA); Noureddin DRIOUECH (ITALY) EDITORIAL BOARD Dieter TRAUTZ (GERMANY); Hamid El BILALI (ITALY); William H. MEYERS (USA); Milic CUROVIC (MONTENEGRO); Tatjana PANDUREVIC (BOSNIA AND HERZEGOVINA); Alexey LUKIN (RUSSIA); Machito MIHARA (JAPAN); Abdulvahed KHALEDI DARVISHAN (IRAN); Viorel ION (ROMANIA); Novo PRZULJ (BOSNIA AND HERZEGOVINA); Steve QUARRIE (UNITED KINGDOM); Hiromu OKAZAWA (JAPAN); Snezana JANKOVIC (SERBIA); Naser SABAGHNIA (IRAN); Sasa ORLOVIC (SERBIA); Sanja RADONJIC (MONTENEGRO); Junaid Alam MEMON (PAKISTAN); Vlado KOVACEVIC (CROATIA); Marko GUTALJ (BOSNIA AND HERZEGOVINA); Dragan MILATOVIC (SERBIA); Pandi ZDRULI (ITALY); Zoran JOVOVIC (MONTENEGRO); Vojislav TRKULJA (BOSNIA AND HERZEGOVINA); Zoran NJEGOVAN (SERBIA); Adriano CIANI (ITALY); Aleksandra DESPOTOVIC (MONTENEGRO); Igor DJURDJIC (BOSNIA AND HERZEGOVINA); Stefan BOJIC (BOSNIA AND HERZEGOVINA); Julijana TRIFKOVIC (BOSNIA AND HERZEGOVINA) TECHNICAL EDITORS Milan JUGOVIC (BOSNIA AND HERZEGOVINA) Luka FILIPOVIC (MONTENEGRO) Frequency: 3 times per year Number of copies: 300 ISSN 2490-3434 (Printed) ISSN 2490-3442 (Online) CONTENT BIOMASS PRODUCTION OF MORINGA (Moringa oleifera L.) AT VARIOUS
    [Show full text]
  • Genome Sequencing of a Yeast-Like Fungal Strain P6, a Novel Species of Aureobasidium Spp.: Insights Into Its Taxonomy, Evolution, and Biotechnological Potentials
    Annals of Microbiology (2019) 69:1475–1488 https://doi.org/10.1007/s13213-019-01531-1 ORIGINAL ARTICLE Genome sequencing of a yeast-like fungal strain P6, a novel species of Aureobasidium spp.: insights into its taxonomy, evolution, and biotechnological potentials Shu-Lei Jia1 & Yan Ma1 & Zhe Chi1 & Guang-Lei Liu1 & Zhong Hu2 & Zhen-Ming Chi1 Received: 2 August 2019 /Accepted: 4 November 2019 /Published online: 6 December 2019 # The Author(s) 2019 Abstract Purpose This study aimed to look insights into taxonomy, evolution, and biotechnological potentials of a yeast-like fungal strain P6 isolated from a mangrove ecosystem. Methods The genome sequencing for the yeast-like fungal strain P6 was conducted on a Hiseq sequencing platform, and the genomic characteristics and annotations were analyzed. The central metabolism and gluconate biosynthesis pathway were studied through the genome sequence data by using the GO, KOG, and KEGG databases. The secondary metabolite potentials were also evaluated. Results The whole genome size of the P6 strain was 25.41Mb and the G + C content of its genome was 50.69%. Totally, 6098 protein-coding genes and 264 non-coding RNA genes were predicted. The annotation results showed that the yeast-like fungal strain P6 had complete metabolic pathways of TCA cycle, EMP pathway, pentose phosphate pathway, glyoxylic acid cycle, and other central metabolic pathways. Furthermore, the inulinase activity associated with β-fructofuranosidase and high glucose oxidase activity in this strain have been demonstrated. It was found that this yeast-like fungal strain was located at root of most species of Aureobasidium spp. and at a separate cluster of all the phylogenetic trees.
    [Show full text]
  • Douglas-Fir What Science Can Tell Us – an Option for Europe
    Douglas-fir What Science Can Tell Us – an option for Europe Heinrich Spiecker, Marcus Lindner and Johanna Schuler (editors) What Science Can Tell Us 9 2019 What Science Can Tell Us Lauri Hetemäki, Editor-In-Chief Georg Winkel, Associate Editor Pekka Leskinen, Associate Editor Minna Korhonen, Managing Editor The editorial office can be contacted at [email protected] Layout: Grano Oy / Jouni Halonen Printing: Grano Oy Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute. ISBN 978-952-5980-65-3 (printed) ISBN 978-952-5980-66-0 (pdf) Douglas-fir What Science Can Tell Us – an option for Europe Heinrich Spiecker, Marcus Lindner and Johanna Schuler (editors) Funded by the Horizon 2020 Framework Programme of the European Union This publication is based upon work from COST Action FP1403 NNEXT, supported by COST (European Cooperation in Science and Technology). www.cost.eu Contents Preface ................................................................................................................................9 Acknowledgements...........................................................................................................11 Executive summary ...........................................................................................................13 1. Introduction ...................................................................................................................17 Heinrich Spiecker and Johanna Schuler 2. Douglas-fir
    [Show full text]
  • Fungal Biodiversity in Extreme Environments and Wood Degradation Potential
    http://waikato.researchgateway.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Fungal biodiversity in extreme environments and wood degradation potential A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences at The University of Waikato by Joel Allan Jurgens 2010 Abstract This doctoral thesis reports results from a multidisciplinary investigation of fungi from extreme locations, focusing on one of the driest and thermally broad regions of the world, the Taklimakan Desert, with comparisons to polar region deserts. Additionally, the capability of select fungal isolates to decay lignocellulosic substrates and produce degradative related enzymes at various temperatures was demonstrated. The Taklimakan Desert is located in the western portion of the People’s Republic of China, a region of extremes dominated by both limited precipitation, less than 25 mm of rain annually and tremendous temperature variation.
    [Show full text]
  • Geographic Variation in the Seed Mycobiome of Coastal Douglas-Fir (Pseudotsuga Menziesii Var
    Geographic variation in the seed mycobiome of Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) By Gillian E. Bergmann A THESIS Submitted to Oregon State University Honors College In partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in BioResource Research, Sustainable Ecosystems (Honors Scholar) Presented May 24, 2019 Commencement June 2019 AN ABSTRACT OF THE THESIS OF Gillian E. Bergmann for the degree of Honors Baccalaureate of Science in BioResource Research presented on May 24, 2019. Title: Geographic variation in the seed mycobiome of Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Abstract Approval: ______________________________________________________________ Posy E. Busby Seeds are an essential component of plant life histories, and seed endophytes have the potential to influence germination, seedling establishment and development. That said, seed endophytes are a relatively new area of study, both in the factors that influence which taxa are present and how these microbes alter plant function. The objectives of my thesis were to characterize the fungal endophytes present in native and introduced populations of Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) seeds, and to test whether some of these endophytes affect seedling survival and growth in response to drought. Using culture-based techniques, endophytes were isolated from eight native populations of Douglas-fir seeds in the United States and from three introduced populations in New Zealand. All seeds had zero or one fungal endophyte; total endophyte isolation frequency was 5.3% in the United States populations and 9.2% in the New Zealand populations. These results are consistent with previous work documenting a bottleneck in the plant microbiome at the seed stage.
    [Show full text]
  • The Value of Ascospore Septation in Separating Mycosphaerella from Sphaerulina in the Dothideales: a Saccardoan Myth ?
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2003 Band/Volume: 55 Autor(en)/Author(s): Crous Pedro W., Groenewald Johannes Z., Aptroot André, Wingfield Mike (Michael) J. Artikel/Article: The value of ascospore septation in separating Mycosphaerella from Sphaerulina in the Dothideales: a Saccardoan myth ?. 136-152 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at The value of ascospore septation in separating Mycosphaerella from Sphaerulina in the Dothideales: a Saccardoan myth? Pedro W. Crous1*, J. Z. (Ewald) Groenewald1, Michael J. Wingfield2 & Andre Aptroot1 1 Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 2 Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa P. W. Crous, J. Z. Groenewald, M. J. Wingfield & A. Aptroot (2003). The value of ascospore septation in separating Mycosphaerella from Sphaerulina in the Dothideales: a Saccardoan myth? - Sydowia 55 (2): 136-152. Ascospore septation was used by Saccardo as a primary character to separate genera in the Dothideales (Ascomycetes). The genus Sphaerulina (3- to multi-sep- tate ascospores) was thus distinguished from Mycosphaerella (1-septate ascos- pores). Several species in Sphaerulina were found to have similar anamorphs as Mycosphaerella. Sequence data derived from the rDNA (ITS 1, 5.8S and ITS 2) gene suggest that Sphaerulina is heterogeneous, and that species with Myco- sphaerella-like anamorphs belong in Mycosphaerella, while those with yeast-like anamorphs belong to the Dothioraceae. Sphaerulina eucalypti, which occurs on Eucalyptus leaves in South Africa, is transferred to Sydowia.
    [Show full text]
  • AR TICLE a New Family and Genus in Dothideales for Aureobasidium-Like
    IMA FUNGUS · 8(2): 299–315 (2017) doi:10.5598/imafungus.2017.08.02.05 A new family and genus in Dothideales for Aureobasidium-like species ARTICLE isolated from house dust Zoë Humphries1, Keith A. Seifert1,2, Yuuri Hirooka3, and Cobus M. Visagie1,2,4 1Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6 2Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, Canada, K1N 6N5 3Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan 4Biosystematics Division, ARC-Plant Health and Protection, P/BagX134, Queenswood 0121, Pretoria, South Africa; corresponding author e-mail: [email protected] Abstract: An international survey of house dust collected from eleven countries using a modified dilution-to-extinction Key words: method yielded 7904 isolates. Of these, six strains morphologically resembled the asexual morphs of Aureobasidium 18S and Hormonema (sexual morphs ?Sydowia), but were phylogenetically distinct. A 28S rDNA phylogeny resolved 28S strains as a distinct clade in Dothideales with families Aureobasidiaceae and Dothideaceae their closest relatives. BenA Further analyses based on the ITS rDNA region, β-tubulin, 28S rDNA, and RNA polymerase II second largest subunit black yeast confirmed the distinct status of this clade and divided strains among two consistent subclades. As a result, we Dothidiomycetes introduce a new genus and two new species as Zalaria alba and Z. obscura, and a new family to accommodate them in ITS Dothideales. Zalaria is a black yeast-like fungus, grows restrictedly and produces conidiogenous cells with holoblastic RPB2 synchronous or percurrent conidiation.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Lilah Gonen for the degree of Master of Science in Botany and Plant Pathology presented on December 9, 2020. Title: Community Ecology of Foliar Fungi and Oomycetes of Pseudotsuga menziesii on the Pacific Northwest Coast. Abstract approved: ______________________________________________________________________ Andy Jones Jared LeBoldus Pseudotsuga menziesii var. menziesii (coast Douglas-fir) is a tree of ecological, economic, and cultural value in its native North American Pacific Northwest (PNW) distribution. P. menziesii is host to a variety of well- documented endophytic foliar microorganisms, including the fungus Nothophaeocryptopus gaeumannii, the causal agent of Swiss needle cast (SNC), and the oomycete Phytophthora pluvialis, which causes cryptic disease symptoms in P. menziesii. Little is understood about how entire foliar microbial communities are structured by geography, climate, and host lineage, nor how foliar fungi and oomycetes interact at the tree level. This study used a large-scale reciprocal transplant experiment, next-generation sequencing (NGS), and culture-based methods to characterize the diversity and structure of foliar fungi and oomycetes of P. menziesii across three sites on the PNW coast. Fungal community composition within trees was structured by host location (p = 1e-4, 1.5e-3) as well as interactions between host location and lineage (p = 0.02, 6.4e- 3, 8e-4). Oomycete communities were dominated by a single OTU, assigned to Phytophthora cacuminis, a recently described species in Australia. An undescribed Pythium species was isolated in culture from 18 trees throughout the study sites. Generalized linear mixed models revealed that fungal community richness was positively correlated to oomycete community richness among trees (estimated coefficient = 0.14, p = 8.3e-16), and that presence of P.
    [Show full text]
  • Proposed Generic Names for Dothideomycetes
    Naming and outline of Dothideomycetes–2014 Nalin N. Wijayawardene1, 2, Pedro W. Crous3, Paul M. Kirk4, David L. Hawksworth4, 5, 6, Dongqin Dai1, 2, Eric Boehm7, Saranyaphat Boonmee1, 2, Uwe Braun8, Putarak Chomnunti1, 2, , Melvina J. D'souza1, 2, Paul Diederich9, Asha Dissanayake1, 2, 10, Mingkhuan Doilom1, 2, Francesco Doveri11, Singang Hongsanan1, 2, E.B. Gareth Jones12, 13, Johannes Z. Groenewald3, Ruvishika Jayawardena1, 2, 10, James D. Lawrey14, Yan Mei Li15, 16, Yong Xiang Liu17, Robert Lücking18, Hugo Madrid3, Dimuthu S. Manamgoda1, 2, Jutamart Monkai1, 2, Lucia Muggia19, 20, Matthew P. Nelsen18, 21, Ka-Lai Pang22, Rungtiwa Phookamsak1, 2, Indunil Senanayake1, 2, Carol A. Shearer23, Satinee Suetrong24, Kazuaki Tanaka25, Kasun M. Thambugala1, 2, 17, Saowanee Wikee1, 2, Hai-Xia Wu15, 16, Ying Zhang26, Begoña Aguirre-Hudson5, Siti A. Alias27, André Aptroot28, Ali H. Bahkali29, Jose L. Bezerra30, Jayarama D. Bhat1, 2, 31, Ekachai Chukeatirote1, 2, Cécile Gueidan5, Kazuyuki Hirayama25, G. Sybren De Hoog3, Ji Chuan Kang32, Kerry Knudsen33, Wen Jing Li1, 2, Xinghong Li10, ZouYi Liu17, Ausana Mapook1, 2, Eric H.C. McKenzie34, Andrew N. Miller35, Peter E. Mortimer36, 37, Dhanushka Nadeeshan1, 2, Alan J.L. Phillips38, Huzefa A. Raja39, Christian Scheuer19, Felix Schumm40, Joanne E. Taylor41, Qing Tian1, 2, Saowaluck Tibpromma1, 2, Yong Wang42, Jianchu Xu3, 4, Jiye Yan10, Supalak Yacharoen1, 2, Min Zhang15, 16, Joyce Woudenberg3 and K. D. Hyde1, 2, 37, 38 1Institute of Excellence in Fungal Research and 2School of Science, Mae Fah Luang University,
    [Show full text]
  • 1962 TABLE of CONTENTS Page 1 Forward 2 Opening Remarks Chairman J
    / HOME • • • Proceedings of the Tenth Western Internat1onal Forest Diseas e Work Conference Victoria, Alberta October 1962 TABLE OF CONTENTS Page 1 Forward 2 Opening Remarks Chairman J. R. Parmeter 2 Address of Welcome R. E. Foster 4 Greetings From Mexico Julio Inda Riquelm e 4 A Review of Some Highlights in Research on Ectotrophic Mycorrhizae J. C. Hopkin s 6 Tissue Saprophytes and the Possibility of Biological Control of Some Tree Diseases John E. Bier 9 An Assessment of the Significance of Disease in Dougla s-Fir Plantations R. E. Foster 10 Foliage Diseases of Young Douglas Fir Wolf G. Ziller 14 What We Should Know About Root Systems R. G. McMinn 20 Fungus Interactions in Wood Decay R. Bourchier 21 Interactions of Fungi Imperfecti, Ascomycetes and Wood-Decaying Fungi E. I. Whittaker 27 Temperature and the Distribution of Fungi in Lodgepole Pine Slash A. A. Loman 31 Fungus Interactions On Wood Decay R. Bourchier 33 Forest Disease Sampling in Douglas-Fir Plantations R. E. Foster 34 Needle-Cast and Needle Blight Fungi Attacking Species of Pin us In Southwestern Forests Paul D. Keener 40 The Story ofRosellinia and Boletus (An Epic) James L. Haskell 't APPENDICES ' I r 43 Active Projects, New and Terminated ·, I I 52 New or Modified Techniques \ 54 Public;ations 61 Minutes of the Business Meeting 65 Committee Report on Status and Needs of Research on Dwarf Mistletoes 76 Membership List SPECIAL REPORT 85 Summary of Experiments on Direct Chemical Control of Some Forest Diseases in Weste~ North America C. R. Quick , et al. , ( .,, ,I .
    [Show full text]