Phylogeny, Cospeciation, and Host Switching in the Evolution of the Ascomycete Genus Rhabdocline on Pseudotsuga and Larix (Pinaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny, Cospeciation, and Host Switching in the Evolution of the Ascomycete Genus Rhabdocline on Pseudotsuga and Larix (Pinaceae) AN ABSTRACT OF THE THESIS OF David S. Gernandt for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on May 7, 1998. Title: Phylogeny, Cospeciation, and Host Switching in the Evolution of the Ascomycete Genus Rhabdocline on Pseudotsuga and Larix (Pinaceae). Abstract Approved: Redacted for Privacy Jeffrey K. Stone The relative role of cospeciation and host switching in the phylogenetic history of ascomycete foliar symbionts is addressed in the orders Leotiales and Rhytismatales, fungi associated predominantly with Pinaceae (Coniferales). Emphasis is placed on comparing the evolution of the sister genera Pseudotsuga and Larix (Pinaceae) with that of the pathogenic and endophytic fungi in the genus Rhabdocline. Pinaceae evolved during the Mesozoic and divergence of all extant genera and several infrageneric lineages (esp. in Pinus) occurred prior to the Tertiary, with subsequent species radiations following climatic changes of the Eocene. The youngest generic pair to evolve from Pinaceae, Larix and Pseudotsuga, diverged near the Cretaceous-Tertiary boundary in East Asia or western North America. Rhabdocline is comprised of seven species and subspecies, six known from two species of Pseudotsuga and one, the asexual species Meria laricis, from three species of Larix. Evidence from host distributions and from nuclear ribosomal DNA suggests that Rhabdocline speciated in western North America and has been involved in several host switches. The ancestor ofMeria laricis appears to have switched from P. menziesii to its current western North American hosts, L. occidentalis, L. lyallii, and very recently may have extended its host range to the European species, L. decidua. The occurrence of two lineages of R. weirii ssp. weirii on both North American species of Pseudotsuga is also probably the result of a recent host switch. Evidence of host- mediated divergence is seen in R. parkeri, which has different internal transcribed spacer types in the geographically isolated coastal and interior forms of P. menziesii. The wide host ranges of fungal genera closely related to Rhabdocline indicates that host switching is a prevalent pattern in the evolution of foliar symbionts in Leotiales and Rhytismatales. The prevalence of host switching in this group relative to other endosymbiotic organisms can probably be attributed to differences in dispersal mechanisms. Spores of foliar fungi are dispersed horizontally by wind and rain, rather than vertically from parent to offspring. Over evolutionary time, this provides more opportunities to shift to new hosts, particularly when the hosts are closely related and have overlapping distributions. ©Copyright by David S. Gernandt May 7, 1998 All Rights Reserved Phylogeny, Cospeciation, and Host Switching in the Evolution of the Ascomycete Genus Rhabdocline on Pseudotsuga and Larix (Pinaceae) by David S. Gernandt A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed May 7, 1998 Commencement June 1998 Doctor of Philosophy thesis of David S. Gernandt presented on May 7, 1998 APPROVED: Redacted for Privacy Major Professor, repiesenting Botany and Plant Pathology Redacted for Privacy Chair of Department of Bot ny and Plant Pathol.:41 Redacted for Privacy Dean of Graduate, chool I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted for Privacy David S. Gernandt, Author Acknowledgments It is with great pleasure that I extend my thanks to the many people who assisted and sometimes participated in the creation of this work. First and foremost, I thank my major professor, Jeffrey K. Stone for his countless hours of training that started while I was an undergraduate at the University of Oregon, continued throughout graduate school and which I hope will continue with future mycological collaborations. Jeffs confidence in me and willingness to guide my education have been critical in the positive graduate experience I had at Oregon State University. I thank the members of my graduate studies committee, Aaron Liston, Joseph Spatafora, Steven Strauss, and Patrick Breen. It was Aaron Liston who first introduced me to both the theoretical and practical aspects of molecular systematics. I have thoroughly enjoyed participating in the several collaborations that we have pursued together. Since his arrival at Oregon State University, Joseph Spatafora has been an excellent mentor to me in both molecular systematics and fungal evolution. I thank Patrick Breen for being my graduate school representative and for letting me off the hook towards the end of my preliminary oral exams. Steven Strauss kindly agreed to sit on my committee as a replacement member for the last hurdle of my graduate school career. I would also like to extend my thanks to former committee member Everett Hansen, who had to be replaced when he took a sabbatical in France. Everett served as a co-advisor with Jeff in the early stages of my graduate studies. Everett was very patient with me and was indispensible in planning my graduate program. Everett gave me room to roam in the laboratory, and in what was certainly a selfless desire to broaden my mycological education, provided me with ample opportunities to assist in his research on Basidiomycetes and Oomycetes. George Carroll and Howie Bonnett served as my undergraduate thesis advisors at University of Oregon. I thank them for first introducing me to the life of a research scientist. Along with Aaron Liston, fellow student Ankie Camacho gave me my first training in DNA isolation, PCR, sequence analysis, and several other molecular methods that have proved invaluable. Over the years I have studied specimens generously provided from researchers around the world. Thanks are due to Ernest Ash III, Brenda Callan, George Carroll, Greg DeNito, John Dennis, Martin Gardner, Everett Hansen, Ottmar Holdenrieder, Dan Jones, Alan Kanaskie, Rolf Kehr, Blakey Lockman, Bill Merrill, Jim Oliphant, Catherine Parks, Miguel Soto, Yoshihiko Tsumura, Craig Schmitt, and Gerard Verkley. I also extend my gratitude to the American Type Culture Collection and Centraalbureau voor Schimmelcultures. Over the years my labmates have given me useful advice on everything from biological theory to technical support to lab courtesy. My sincerest thanks (approximately in order of appearance), to Tina Dreisbach, Marion Murray, Jerry Hefner, Mike McWilliams, Brennan Ferguson, Deborah Clark, Ankie Camacho, Wes Messinger, John Wheeler, Jim Oliphant, Susan Massey, Pablo Rosso, Koren Dennis, Aleta Groenig, Lori Trummer, Lori Winton, Kimberly Davis, and Bryan Capitano. Although I have not worked side-by-side with members of the Spatafora lab, they too have been availed themselves to me on countless occassions. Thanks to Jamie Platt, Lisa Grubisha, and Eric Peterson in that regard. Funding for this project has come from discretionary funds of Jeff Stone, and from personal contributions by David Miller Sr. and David Miller Jr. at Moore Mill and Lumber Company in Bandon, Oregon and by my grandmother, Frances Cavoretto. The Mycological Society of America awarded me several travel grants to their annual meetings as well as the Backus award. Sigma Xi contributed a grant in aid of research. The last several months of writing and analyses for this thesis were done in Mexico City. I thank my future wife Sol Ortiz Garcia for her love and support during that time. I also thank her brother Salvador Ortiz Garcia for providing critical computer support. Finally, I would like to thank my parents, and once again, my grandmother, for all the extra little things they did to help me reach this point in my life. This thesis is dedicated to the loving memory of my grandmother, Frances Cavoretto. CONTRIBUTION OF AUTHORS Chapter three was coauthored with Aaron Liston, who advised in the design and analysis, provided laboratory resources, and reviewed several drafts. Jeffrey K. Stone advised in the sampling, participated in acquisition of fungal isolates, provided laboratory resources, and edited several drafts for chapters one, four, five, six, and seven. Despite its placement in this thesis, chapter five was the first chapter written. Francisco J. Camacho kindly trained me in the molecular techniques and sequence analysis that were used in this and several other chapters. He also participated in the benchwork necessary for sequencing Meria laricis and Rhabdocline parker!. TABLE OF CONTENTS Page CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW 1 1.1 Abstract 1 1.2 Introduction 2 1.3 Strengthening hypotheses regarding the evolution of Pseudotsuga and Larix 4 1.4 Phylogenetic reconstruction of inoperculate discomycetes 6 1.5 Speciation of Rhabdocline on Douglas-Fir and Larch 9 1.6 Literature Cited 12 CHAPTER TWO: A PHYLOGENETIC RECONSTRUCTION OF PINACEAE BASED ON RBCL AND THE FOSSIL RECORD 16 2.1 Abstract 16 2.2 Introduction 17 2.3 Materials and Methods 22 2.4 Results 25 2.5 Discussion 34 2.6 Literature Cited 35 CHAPTER THREE: INTERNAL TRANSCRIBED SPACER REGION EVOLUTION IN LARIX AND PSEUDOTSUGA (PINACEAE) 39 3.1 Abstract 39 3.2 Introduction 40 3.3 Materials and Methods 42 3.4 Results 49 3.5 Discussion 63 3.6 Acknowledgements 70 3.7 Literature Cited 70 CHAPTER FOUR: A PHYLOGENETIC RECONSTRUCTION OF INOPERCULATE DISCOMYCETES INFERRED FROM PARTIAL SMALL SUBUNIT SEQUENCES OF NUCLEAR RIBOSOMAL DNA 76 4.1 Abstract 76 4.2 Introduction
Recommended publications
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Ascomyceteorg 06-05 Ascomyceteorg
    “The story so far...” An Interim Bibliography of Hans-Otto Baral for the Years 1981-2014 Martin BEMMANN Ascomycete.org, 6 (5) : 95-98. Décembre 2014 Mise en ligne le 18/12/2014 Hans-Otto Baral, aka “Zotto”, has contributed a vast amount of pa- BARAL H.-O. 1987. — Der Apikalapparat der Helotiales. Eine lichtmi- pers and digital publications which have inspired not only his aca- kroskopische Studie über Arten mit Amyloidring. Zeitschrift für demic colleagues but also the community of amateur mycologists, Mykologie, 53 (1): 119-135. whose efforts he has included in his ascomycete research for de- [http://www.dgfm-ev.de/sites/default/files/ZM531119Baral.pdf] cades, thus helping stimulate their own work. This compilation of BARAL H.-O. 1989. — Beiträge zur Taxonomie der Discomyceten I. his publications and ephemeral works to date is also intended as a Zeitschrift für Mykologie, 55 (1): 119-130. guide for all those who are unaware of its extent, and includes keys [http://www.dgfm-ev.de/sites/default/files/ZM551119Baral.pdf] and some otherwise unpublished papers shared on the DVD “In Vivo BARAL H.-O. 1989. — Beiträge zur Taxonomie der Discomyceten II. Veritas 2005”. Die Calycellina-Arten mit 4sporigen Asci. Beiträge zur Kenntnis der The form “H.-O.” Baral as opposed to “H. O.” Baral has been used Pilze Mitteleuropas, 5: 209-236. consistently throughout, though it varies in the different publica- BARAL H.-O. 1992. — Vital versus herbarium taxonomy: morphologi- tions. Only names of genera and species are set in italics even if this cal differences between living and dead cells of Ascomycetes, and deviates from the original titles.
    [Show full text]
  • Biol B242 - Coevolution
    BIOL B242 - COEVOLUTION http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html BIOL B242 - COEVOLUTION So far ... In this course we have mainly discussed evolution within species, and evolution leading to speciation. Evolution by natural selection is caused by the interaction of populations/species with their environments. Today ... However, the environment of a species is always partly biotic. This brings up the possiblity that the "environment" itself may be evolving. Two or more species may in fact coevolve. And coevolution gives rise to some of the most interesting phenomena in nature. What is coevolution? At its most basic, coevolution is defined as evolution in two or more evolutionary entities brought about by reciprocal selective effects between the entities. The term was invented by Paul Ehrlich and Peter Raven in 1964 in a famous article: "Butterflies and plants: a study in coevolution", in which they showed how genera and families of butterflies depended for food on particular phylogenetic groupings of plants. We have already discussed some coevolutionary phenomena: For example, sex and recombination may have evolved because of a coevolutionary arms race between organisms and their parasites; the rate of evolution, and the likelihood of producing resistance to infection (in the hosts) and virulence (in the parasites) is enhanced by sex. We have also discussed sexual selection as a coevolutionary phenomenon between female choice and male secondary sexual traits. In this case, the coevolution is within a single species, but it is a kind of coevolution nonetheless. One of our problem sets involved frequency dependent selection between two types of players in an evolutionary "game".
    [Show full text]
  • A Novel Family of Diaporthales (Ascomycota)
    Phytotaxa 305 (3): 191–200 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.305.3.6 Melansporellaceae: a novel family of Diaporthales (Ascomycota) ZHUO DU1, KEVIN D. HYDE2, QIN YANG1, YING-MEI LIANG3 & CHENG-MING TIAN1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, PR China 2International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bail- ongsi, Kunming 650224, PR China 3Museum of Beijing Forestry University, Beijing 100083, PR China *Correspondence author email: [email protected] Abstract Melansporellaceae fam. nov. is introduced to accommodate a genus of diaporthalean fungi that is a phytopathogen caus- ing walnut canker disease in China. The family is typified by Melansporella gen. nov. It can be distinguished from other diaporthalean families based on its irregularly uniseriate ascospores, and ovoid, brown conidia with a hyaline sheath and surface structures. Phylogenetic analysis shows that Melansporella juglandium sp. nov. forms a monophyletic group within Diaporthales (MP/ML/BI=100/96/1) and is a new diaporthalean clade, based on molecular data of ITS and LSU gene re- gions. Thus, a new family is proposed to accommodate this taxon. Key words: diaporthalean fungi, fungal diversity, new taxon, Sordariomycetes, systematics, taxonomy Introduction The ascomycetous order Diaporthales (Sordariomycetes) are well-known fungal plant pathogens, endophytes and saprobes, with wide distributions and broad host ranges (Castlebury et al. 2002, Rossman et al. 2007, Maharachchikumbura et al. 2016).
    [Show full text]
  • Diaporthales), and the Introduction of Apoharknessia Gen
    STUDIES IN MYCOLOGY 50: 235–252. 2004. Phylogenetic reassessment of the coelomycete genus Harknessia and its teleomorph Wuestneia (Diaporthales), and the introduction of Apoharknessia gen. nov. Seonju Lee1, Johannes Z. Groenewald2 and Pedro W. Crous2* 1Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Stellenbosch 7602, South Africa; 2Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands *Correspondence: Pedro W. Crous, [email protected] Abstract: During routine surveys for microfungi from the Fynbos of the Cape Floral Kingdom in South Africa, isolates of several Harknessia species were collected. Additional isolates of Harknessia spp. were collected from Eucalyptus leaves in South Africa, as well as elsewhere in the world where this crop is grown. Interspecific relationships of Harknessia species were inferred based on partial sequence of the internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA), as well as the b- tubulin and calmodulin genes. From these data, three new species are described, namely H. globispora from Eucalyptus, H. protearum from Leucadendron and Leucospermum, and H. capensis from Brabejum stellatifolium and Eucalyptus sp. Further- more, based on large subunit nrDNA sequence data, Harknessia is shown to be heterogeneous, and a new genus, Apoharknes- sia, is introduced for A. insueta, which is distinguished from H. eucalypti, the type species of Harknessia, by having an apical conidial appendage. A morphologically similar genus, Dwiroopa, which is characterized by several prominent germ slits along the sides of its conidia, is shown to cluster basal to Harknessia. Species of Harknessia, and their teleomorphs accommodated in Wuestneia, are shown to represent an undescribed family in the Diaporthales, as is Apoharknessia, for which no teleomorph is known.
    [Show full text]
  • 4118880.Pdf (10.47Mb)
    Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ge, Zai-Wei, Zhu L. Yang, Donald H. Pfister, Matteo Carbone, Tolgor Bau, and Matthew E. Smith. 2014. “Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota).” PLoS ONE 9 (8): e103457. doi:10.1371/journal.pone.0103457. http:// dx.doi.org/10.1371/journal.pone.0103457. Published Version doi:10.1371/journal.pone.0103457 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785861 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota) Zai-Wei Ge1,2,3*, Zhu L. Yang1*, Donald H. Pfister2, Matteo Carbone4, Tolgor Bau5, Matthew E. Smith3 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China, 2 Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 4 Via Don Luigi Sturzo 173, Genova, Italy, 5 Institute of Mycology, Jilin Agriculture University, Changchun, Jilin, China Abstract The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the ‘‘earth tongue fungi’’ in the genera Cudonia and Spathularia.
    [Show full text]
  • Aportes Al Conocimiento De La Biota Liquénica Del Oasis De Neblina De Alto Patache, Desierto De Atacama1
    Revista de Geografía Norte Grande, 68: 49-64 (2017) Artículos Aportes al conocimiento de la biota liquénica del oasis de neblina de Alto Patache, Desierto de Atacama1 Reinaldo Vargas Castillo2, Daniel Stanton3 y Peter R. Nelson4 RESUMEN Los denominados oasis de neblina son áreas en las zonas costeras del Desierto de Ataca- ma donde el ingreso habitual de niebla permite el establecimiento y desarrollo de diver- sas poblaciones de plantas vasculares, generando verdaderos hotspots de diversidad. En estas áreas, la biota liquenológica ha sido poco explorada y representa uno de los ele- mentos perennes más importantes que conforman la comunidad. En un estudio previo de la biota del oasis de neblina de Alto Patache se reportaron siete especies. Con el fin de mejorar este conocimiento, se analizó la riqueza de especies presentes en el oasis si- guiendo dos transectos altitudinales en diferentes orientaciones del farellón. Aquí repor- tamos preliminarmente 77 especies de líquenes para el oasis de neblina de Alto Patache. De estas, 61 especies corresponden a nuevos registros para la región de Tarapacá, en tanto que las especies Amandinea eff lorescens, Diploicia canescens, Myriospora smarag- dula y Rhizocarpon simillimum corresponden a nuevos registros para el país. Asimismo, se destaca a Alto Patache como la única localidad conocida para Santessonia cervicornis, una especie endémica y en Peligro Crítico. Palabras clave: Oasis de neblina, Desierto de Atacama, líquenes. ABSTRACT Fog oases are zones along the Atacama Desert where the regular input of fog favors the development of rich communities of vascular plants, becoming biodiversity hotspots. In these areas, the lichen biota has been poorly explored and represents one of the most conspicuous elements among the perennials organisms that form the community.
    [Show full text]
  • Pathogenicity and Distribution of Two Species of Cytospora on Populus Tremuloides in Portions of the Rocky Mountains and Midwest in the United T States ⁎ M.M
    Forest Ecology and Management 468 (2020) 118168 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Pathogenicity and distribution of two species of Cytospora on Populus tremuloides in portions of the Rocky Mountains and midwest in the United T States ⁎ M.M. Dudleya, , N.A. Tisseratb, W.R. Jacobib, J. Negrónc, J.E. Stewartd a Biology Department, Adams State University, Alamosa, CO, United States b Department of Agricultural Biology (Emeritus), Colorado State University, Fort Collins, CO, United States c USFS Rocky Mountain Research Station, Fort Collins, CO, United States d Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States ABSTRACT Historically, Cytospora canker of quaking aspen was thought to be caused primarily by Cytospora chrysosperma. However, a new and widely distributed Cytospora species on quaking aspen was recently described (Cytospora notastroma Kepley & F.B. Reeves). Here, we show the relative pathogenicity, abundance, and frequency of both species on quaking aspen in portions of the Rocky Mountain region, and constructed species-level phylogenies to examine possible hybridization among species. We inoculated small-diameter aspen trees with one or two isolates each of C. chrysosperma and C. notastroma in a greenhouse and in environmental growth chambers. Results indicate that both Cytospora species are pathogenic to drought-stressed aspen, and that C. chrysosperma is more aggressive (i.e., caused larger cankers) than C. notastroma, particularly at cool temperatures. Neither species cause significant canker growth on trees that were not drought-stressed. Both C. chrysosperma and C. notastroma are common on quaking aspen, in addition to a third, previously described species, Cytospora nivea.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Tile Geoglossaceae of Sweden **
    ARKIV FOR· BOTANIK. BAND 30 A. N:o 4. Tile Geoglossaceae of Sweden (with Regard also to the Surrounding CQuntries). By J. A. NANNFELDT. With 5 plates and 6 figures in the text. Communicated June 4th, 1941, by NILS E. SVEDELIUS and ROB. E. FRIES. There are hardly any Discomycetes that have been the subject of so many monographs as the Geoglossaceae. Already in 1875, COOKE (1875 a, 1875 b) published two monographic studies, and some years later he described and illustrated in his Mycographia (COOKE 1879) the majority of the species known at that time. In 1897, MAssEE published a world monograph of the family, though this paper - as so many other publications by the same author - is mainly a compi­ lation. DURA.ND'S monog-raph (1908, with a supplement in 19~1) of the North American species is a model of accuracy and thoroughness, and indispensable also for other parts of the world. This monograph was the base for a pamphlet by LLOYD (1916) on the Geoglossaceae of the world. If we add v. LUYK'S revision (1919) of the Geoglossaceae in the Rijks­ herbarium at Leiden, with all PERSOON'S specimens, SINDEN & FITZPATRICK'S paper (1930) on a new species of T1'ichoglos8ttrli, IMAI'S studies (1934, 1936 a, 1936 b, 1938) on Japanese species of certain genera, his list of the Norwegian Geoglos8aceae (IMA.I 1940), and MAIN'S papers (1936, 19~0) with descriptions of several new American species, the most important contri­ butions of recent date to the taxonomy of the family have been mentioned.
    [Show full text]
  • Micolucus 5 2018
    MICOLUCUS • SOCIEDADE MICOLÓXICA LUCUS NÚMERO 5 • ANO 2018 NÚME R O 5•ANO2018 Limiar .............................................................................................. 1 é unha publicación da Sociedade Micolóxica Lucus, Biodiversidade fúnxica da Reserva da Biosfera Terras do Miño: CIF: G27272954 Lentinellus tridentinus. Depósito Legal: LU 140-2014 JOSE CASTRO................................................................................... 2 ISSN edición impresa: 2386-8872 ISSN edición dixital: 2387-1822 Aportaciones al conocimiento de la micobiota de la Sierra de O Courel (Lugo, España): REDACCIÓN E COORDINACIÓN: Donadinia helvelloides JULIÁN ALONSO DÍAZ...................................................................... 9 Julián Alonso Díaz Jose Castro Ferreiro Descripción de cuatro especies interesantes para la Benito Martínez Lobato micoflora de Galicia. Juan Antonio Martínez Fidalgo JOSÉ MANUEL CASTRO MARCOTE, JOSÉ MARÍA COSTA LAGO ..... 19 Alfonso Vázquez Fraga José Manuel Fernández Díaz Hongos hipogeos de la provincia de Lugo: Tuber foetidum. Cristina Gayo Cancelas JOSE CASTRO, JULIÁN ALONSO, ALFONSO VÁZQUEZ ................... 31 Jesús Javier Varela Quintas Howard Fox Fomitopsis iberica, un políporo agente de pudrición marrón. • Os artigos remitidos a SANTIAGO CORRAL ESTÉVEZ, JOSÉ MARÍA COSTA LAGO ............. 38 son revisados por asesores externos antes de ser Estudos sobre a micobiota folícola da Reserva da Biosfera aceptados ou rexeitados. Terras do Miño I: Chloroscypha chloromela. JOSE CASTRO ...............................................................................
    [Show full text]
  • Color Plates
    Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper.
    [Show full text]