Tropical Mycology: Volume 2, Micromycetes

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Mycology: Volume 2, Micromycetes Tropical Mycology: Volume 2, Micromycetes Tropical Mycology: Volume 2, Micromycetes Edited by Roy Watling, Juliet C. Frankland, A.M. Ainsworth, Susan Isaac and Clare H. Robinson CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi-publishing.org © CAB International 2002. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Tropical mycology / edited by Roy Watling ... [et al.]. p. cm. Selected papers of the Millenium Symposium held April 2000 at the Liverpool John Moores University and organized by the British Mycological Society. Includes bibliographical references and index. Contents: v. 1. Macromycetes. ISBN 0-85199-542-X (v. 1 : alk. paper) 1. Mycology--Tropics--Congresses. 2. Fungi--Tropics--Congresses. I. Watling, Roy. QK615.7.T76 2001 616.9¢69¢00913--dc21 2001025877 ISBN 0 85199 543 8 Typeset in Photina by Wyvern 21 Ltd. Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn. Contents Dedication vii Contributors ix Preface xi 1 Why Study Tropical Fungi? 1 D.L. Hawksworth 2 Key to Tropical Species of Nectria-like Fungi 13 G.J. Samuels, A.Y. Rossman and H.-J. Schroers 3 A Reassessment of the Taxonomy of Some Tropical Sooty Moulds 33 J.L. Faull, I. Olejnik, M. Ingrouille and D. Reynolds 4 Lignicolous Freshwater Higher Fungi with Reference to their Teleomorph and Anamorph Stages 41 S. Sivichai, E.B. Gareth Jones and N.L. Hywel-Jones 5 The Pandanaceae – Does it Have a Diverse and Unique Fungal Biota? 51 E.H.C. McKenzie, S.R. Whitton and K.D. Hyde 6 Aspects of Graminicolous Downy Mildew Biology: Perspectives for Tropical Plant Pathology and Peronosporomycetes Phylogeny 63 M.A. Spencer and M.W. Dick v vi Contents 7 Invasive Neotropical Pathogens of Tree Crops 83 H.C. Evans 8 Lichens of Tropical Forests 113 B.J. Coppins and P. Wolseley 9 The Importance of Invertebrate-pathogenic Fungi from the Tropics 133 N.L. Hywel-Jones 10 Tropical Mycoses: Hazards to Travellers 145 E.G.V. Evans and H.R. Ashbee 11 Recent and Future Discoveries of Pharmacologically Active Metabolites from Tropical Fungi 165 G. Bills, A. Dombrowski, F. Peláez, J. Polishook and Zhiqiang An Index 195 Dedication It is with great pleasure that this volume is dedicated to Dr Reginald W.G. Dennis, who has made many important contributions to our understanding of tropical fungi, especially in unravelling the complexities of members of the large genus Xylaria and allies. His mycological interests range from the hyaloscyphaceous and helotiaceous ascomycetes to pyrenomycetous taxa, agarics, rusts and gasteromycetes. Visits to Trinidad and Venezuela, in 1949 and 1958, resulted in several papers, which were to be only a foretaste of his Fungus Flora of Venezuela and Adjacent Countries, published in 1970 and illus- trated with his own watercolours. It has become an indispensable companion to any mycologist working in South America and is a useful introductory guide for all tropical fungus researchers. He began his career as a plant pathologist working in Scotland at the West of Scotland College of Agriculture and Dept of Agriculture of Scotland, East Craigs, as they were then, with a sandwich period between in the School of Agriculture, Cambridge. He moved to taxon- omy from his earlier work on plant pathogens, including virus diseases of cereal and root crops, when he joined the staff of the Royal Botanic Gardens, Kew in 1944, where he still works even though retired. He is an Honorary Member of the British Mycological Society, The Mycological Society of America and the Swiss Mycological Society, and is a Corresponding Member of the Botanical Society of Argentina. A special Festschrift published in Vol. 31 of the Kew Bulletin was dedi- cated to Dr Dennis on his retirement from service and includes therein an account of his works and interests. He was 90 in July 2000. Roy Watling, June 2001 (See Spooner, B.J. (2000) Mycological Research 104, 1410.) vii Contributors Zhiqiang An, Centro de Investigación Básica, Merck, Sharp & Dohme de España S.A., Josefa Valcárcel 38, 28027 Madrid, Spain H. Ruth Ashbee, Mycology Reference Centre, Division of Microbiology, University of Leeds, LS2 9JT and General Infirmary, Leeds LS1 3EX, UK Gerald Bills, Centro de Investigación Básica, Merck, Sharp & Dohme de España S.A., Josefa Valcárcel 38, 28027 Madrid, Spain Brian J. Coppins, Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK M.W. Dick, Centre for Plant Diversity and Systematics, School of Plant Sciences, The University of Reading, Whiteknights, Reading RG6 6AS, UK Anne Dombrowski, Natural Products Drug Discovery, Merck Research Laboratories, Rahway, NJ 07065, USA E.G.V. Evans, Mycology Reference Centre, Division of Microbiology, University of Leeds, Leeds LS2 9JT, UK and General Infirmary, Leeds LS1 3EX, UK; present address: Department of Medical Microbiology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK Harry C. Evans, CABI Bioscience, Silwood Park, Ascot, Berkshire SL5 7TA, UK J.L. Faull, School of Biological and Chemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK E.B. Gareth Jones, BIOTEC–Mycology, Yothi Laboritories, 73/1 Rama 6 Road, Rajdhevee, Bangkok 10400, Thailand David L. Hawksworth, Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal, Ciudad Universitaria, E-28040 Madrid, Spain Kevin D. Hyde, Centre for Research in Fungal Diversity, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China ix x Contributors Nigel L. Hywel-Jones, BIOTEC–Mycology, Yothi Laboratories, 73/1 Rama 6 Road, Rajdhevee, Bangkok 10400, Thailand M. Ingrouille, School of Biological and Chemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK Eric H.C. McKenzie, Landcare Research, Private Bag 92170, Auckland, New Zealand I. Olejnik, School of Biological and Chemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK Fernando Peláez, Centro de Investigación Básica, Merck, Sharp & Dohme de España S.A., Josefa Valcárcel 38, 28027 Madrid, Spain Jon Polishook, Natural Products Drug Discovery, Merck Research Laboratories, Rahway, NJ 07065, USA D. Reynolds, Botany Section, Natural History Museum, 900 Exposition Boulevard, Los Angeles, CA 90007, USA Amy Y. Rossman, Systematic Botany and Mycology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA Gary J. Samuels, Systematic Botany and Mycology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA Hans-Josef Schroers, Centraalbureau voor Schimmelcultures, 3508 AD Utrecht, The Netherlands Somsak Sivichai, BIOTEC–Mycology, Yothi Laboratories, 73/1 Rama 6 Road, Rajdhevee, Bangkok 10400, Thailand M.A. Spencer, Centre for Plant Diversity and Systematics, School of Plant Sciences, The University of Reading, Whiteknights, Reading RG6 6AS, UK Stephen R. Whitton, Landcare Research, Private Bag 92170, Auckland, New Zealand Pat Wolseley, Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Preface Half of the membership of the British Mycological Society resides abroad and many of these members are from countries which are generally considered to be situated in ‘The Tropics’. Since the Sixth General Meeting of the Society held in Birmingham in 1988, the Society has recognized the increasing impor- tance of tropical mycology and Council felt that it would be appropriate to bring both these factors of membership and research interests together to celebrate the millennium. A symposium therefore was organized for April 2000 to cover as many aspects as possible of the tropical mycobiota. This volume is one of two which result from this Millennium Symposium held at the Liverpool John Moores University. In order to broaden the scope and the depth of the subjects covered, other chapters not formally presented at the symposium are included. This present volume deals with the microfungi; Volume 1 deals with the macrofungi. The British Mycological Society has now organized two meetings specifi- cally on Tropical Mycology and both were held in Liverpool, coincidentally a city with a long history of contacts with the areas of the world which lie between 25° North and South of the equator and known to us all as ‘The Tropics’. The present pair of books will therefore act as a companion to the Proceedings of the meeting held in 1992, which were published 1 year later under the title Aspects of Tropical Mycology. The chapters included here have expanded the ideas first discussed therein and each is a summary of the state of knowledge in the respective field. Some of the studies have indirect connections to the two expeditions the Society has organized to tropical areas, the first to Ecuador in 1993 and the second to Thailand in 1997. In the selection of subjects, attempts have been made to bring together xi xii Preface papers which offer a wide spectrum of information, linking results from studies in the New World to data from the Old World tropics. Contributions by 26 researchers provide 11 chapters covering the major area of the tropics. Although our knowledge of the tropical mycotas is far from adequate, the surge of interest in the fungi of these areas has expanded our knowledge several-fold since 1992, as documented in the first chapter, the contents of which could equally apply to both the macro- and the microfungi.
Recommended publications
  • Downy Mildew of Pearl Millet and Its Management
    Downy Mildew of Pearl Millet and its Management HS Shetty, S Niranjan Raj, KR Kini, HR Bishnoi, R Sharma BS Rajpurohit, RS Mahala, HP Yadav, SK Gupta and OP Yadav All India Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research) Mandor, Jodhpur 342 304, Rajasthan, India Correct Citation: Shetty HS, Raj Niranjan S, Kini KR, Bishnoi HR, Sharma R, Rajpurohit BS, Mahala RS, Yadav HP, Gupta SK and Yadav OP. 2016. Downy Mildew of Pearl Millet and its Management. All In- dia Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research), Mandor, Jodhpur – 342 304. 53 pp. Lasertypeset & printed at M/s Royal Offset Printers, A-89/1, Naraina Industrial Area, Phase-I, New Delhi-110028 Downy Mildew of Pearl Millet and its Management Content Chapter Page No. 1. Introduction 1 2. Diseases of pearl millet 1 3. Downy mildew 2 3.1 Host range 2 3.2 Symptoms 3 3.3 Yield losses 4 3.4 Pathogen biology 5 3.5 Disease cycle 7 3.6 Establishment of pathogen culture and maintenance of isolates 9 3.7 Epidemiology 11 3.8 Screening techniques 13 3.9 Variability in pathogen 18 4. Downy mildew management 30 4.1 Host - plant resistance 30 4.2 Genetic diversification of hybrids 34 4.3 Chemical control 35 4.4 Cultural methods 37 4.5 Biological control 38 4.6 Integrated disease management 41 5. Future thrust 42 6. References 44 v vi Tables Table 1 Downy mildew incidence (%) in PMDMVN-2014 at soft dough stage across 11 locations in India Table 2 On-farm surveys conducted in India to monitor the prevalence of downy mildew
    [Show full text]
  • INHERITANCE of AVIRULENCE in Sclerospora Graminicola (Schroet) and RESISTANCE in PEARL MILLET to the PATHOGEN
    INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (Schroet) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN CHANDRAMANI RAJ M.Sc. (Ag.) DOCTOR OF PHILOSOPHY IN AGRICULTURE (PLANT PATHOLOGY) 2017 INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (Schroet) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN BY CHANDRAMANI RAJ M.Sc. (Ag.) THESIS SUBMITTED TO THE PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN AGRICULTURE (PLANT PATHOLOGY) CHAIRPERSON: Dr. B. PUSHAPAVATHI DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE RAJENDRANAGAR HYDERABAD-500 030 PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY 2017 DECLARATION I, CHANDRAMANI RAJ, hereby declare that the thesis entitled “INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (SCHROET) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN” submitted to the Professor Jayashankar Telangana State Agricultural University for the degree of DOCTOR OF PHILOSOPHY IN AGRICULTURE is the result of original research work done by me. I also declare that no material contained in this thesis has been published earlier in any manner. Place: Rajendranagar (CHANDRAMANI RAJ) Date: I. D. No. RAD/12-19 CERTIFICATE Mr. CHANDRAMANI RAJ has satisfactorily prosecuted the course of research and that thesis entitled “INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (SCHROET) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN” submitted is the result of original research and is of sufficiently high
    [Show full text]
  • Revision of the Verrucaria Elaeomelaena Species Complex and Morphologically Similar Freshwater Lichens (Verrucariaceae, Ascomycota)
    Phytotaxa 197 (3): 161–185 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.197.3.1 Revision of the Verrucaria elaeomelaena species complex and morphologically similar freshwater lichens (Verrucariaceae, Ascomycota) THÜS, H.1, ORANGE, A.2, GUEIDAN, C.1,3, PYKÄLÄ, J.4, RUBERti, C.5, Lo SCHIAVO, F.5 & NAscimBENE, J.5 1Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. [email protected] 2Department of Biodiversity and Systematic Biology, National Museum Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom. 3CSIRO, NRCA, Australian National Herbarium, GPO Box 1600, Canberra ACT 2601 Australia (current address) 4Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, FI-00251 Helsinki, Finland. 5Department of Biology, University of Padua, via Ugo Bassi 58/b, 35121, Padova Abstract The freshwater lichens Verrucaria elaeomelaena, V. alpicola, and V. funckii (Verrucariaceae/Ascomycota) have long been confused with V. margacea and V. placida and conclusions on the substratum preference and distribution have been obscured due to misidentifications. Independent phylogenetic analyses of a multigene dataset (RPB1, mtSSU, nuLSU) and an ITS- dataset combined with morphological and ecological characters confirm that the Verrucaria elaeomelaena agg. consists of several cryptic taxa. It includes V. elaeomelaena s.str. with mostly grey to mid-brown thalli and transparent exciple base which cannot be distinguished morphologically from several other unnamed clades from low elevations, the semi-cryptic V. humida spec. nov., which is characterised by smaller perithecia, shorter and more elongated spores compared to other species in this group and V.
    [Show full text]
  • A Five-Gene Phylogeny of Pezizomycotina
    Mycologia, 98(6), 2006, pp. 1018–1028. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 A five-gene phylogeny of Pezizomycotina Joseph W. Spatafora1 Burkhard Bu¨del Gi-Ho Sung Alexandra Rauhut Desiree Johnson Department of Biology, University of Kaiserslautern, Cedar Hesse Kaiserslautern, Germany Benjamin O’Rourke David Hewitt Maryna Serdani Harvard University Herbaria, Harvard University, Robert Spotts Cambridge, Massachusetts 02138 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Wendy A. Untereiner Department of Botany, Brandon University, Brandon, Franc¸ois Lutzoni Manitoba, Canada Vale´rie Hofstetter Jolanta Miadlikowska Mariette S. Cole Vale´rie Reeb 2017 Thure Avenue, St Paul, Minnesota 55116 Ce´cile Gueidan Christoph Scheidegger Emily Fraker Swiss Federal Institute for Forest, Snow and Landscape Department of Biology, Duke University, Box 90338, Research, WSL Zu¨ rcherstr. 111CH-8903 Birmensdorf, Durham, North Carolina 27708 Switzerland Thorsten Lumbsch Matthias Schultz Robert Lu¨cking Biozentrum Klein Flottbek und Botanischer Garten der Imke Schmitt Universita¨t Hamburg, Systematik der Pflanzen Ohnhorststr. 18, D-22609 Hamburg, Germany Kentaro Hosaka Department of Botany, Field Museum of Natural Harrie Sipman History, Chicago, Illinois 60605 Botanischer Garten und Botanisches Museum Berlin- Dahlem, Freie Universita¨t Berlin, Ko¨nigin-Luise-Straße Andre´ Aptroot 6-8, D-14195 Berlin, Germany ABL Herbarium, G.V.D. Veenstraat 107, NL-3762 XK Soest, The Netherlands Conrad L. Schoch Department of Botany and Plant Pathology, Oregon Claude Roux State University, Corvallis, Oregon 97331 Chemin des Vignes vieilles, FR - 84120 MIRABEAU, France Andrew N. Miller Abstract: Pezizomycotina is the largest subphylum of Illinois Natural History Survey, Center for Biodiversity, Ascomycota and includes the vast majority of filamen- Champaign, Illinois 61820 tous, ascoma-producing species.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Chytridiomycosis Causes Amphibian Mortality Associated with Population Declines in the Rain Forests of Australia and Central America
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9031–9036, July 1998 Population Biology Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America LEE BERGERa,b,c,RICK SPEAREa,PETER DASZAKd,D.EARL GREENe,ANDREW A. CUNNINGHAMf,C.LOUISE GOGGINg, RON SLOCOMBEh,MARK A. RAGANi,ALEX D. HYATTb,KEITH R. MCDONALDj,HARRY B. HINESk,KAREN R. LIPSl, GERRY MARANTELLIm, AND HELEN PARKESb aSchool of Public Health and Tropical Medicine, James Cook University, Townsville, Queensland 4811, Australia; bAustralian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organization, Ryrie Street, Geelong, Victoria 3220, Australia; dSchool of Life Sciences, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, United Kingdom; eMaryland Animal Health Laboratory, College Park, MD 20740; fInstitute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom; gCommonwealth Scientific and Industrial Research Organization, Marine Research, Hobart, Tasmania 7001, Australia; hVeterinary Clinical Centre, University of Melbourne, Werribee, Victoria 3030, Australia; iCanadian Institute for Advanced Research, Program in Evolutionary Biology, National Research Council of Canada, Halifax, NS Canada B3H 3Z1; jConservation Strategy Branch, Queensland Department of Environment, Atherton, Queensland 4883, Australia; kConservation Resource Unit, Queensland Department of Environment, Moggill, Queensland 4070, Australia; lDepartment of Zoology, Southern Illinois University, Carbondale, IL 62901-6501; and mAmphibian Research Centre, 15 Suvla Grove, Nth Coburg, Victoria 3058, Australia Edited by Robert May, University of Oxford, Oxford, United Kingdom, and approved May 18, 1998 (received for review March 9, 1998) ABSTRACT Epidermal changes caused by a chytridiomy- primary degraders or saprobes, using substrates such as chitin, cete fungus (Chytridiomycota; Chytridiales) were found in plant detritus, and keratin.
    [Show full text]
  • Bioimaging Structural Signatures of the Oomycete Pathogen Sclerospora Graminicola in Pearl Millet Using Different Microscopic Te
    www.nature.com/scientificreports OPEN Bioimaging structural signatures of the oomycete pathogen Sclerospora graminicola in pearl millet using diferent microscopic techniques Hunthrike Shekar Shetty1, Sharada Mysore Suryanarayan2, Sudisha Jogaiah3*, Aditya Rao Shimoga Janakirama1, Michael Hansen4, Hans Jørgen Lyngs Jørgensen 4 & Lam-Son Phan Tran5,6* In this case study, the mycelium growth of Sclerospora graminicola in the infected tissues of pearl millet and the process of sporulation and liberation of sporangia and zoospores were observed using four diferent microscopic techniques. The cotton blue-stained samples observed under light microscope revealed the formation of zoospores with germ tubes, appressoria and initiation of haustorium into the host cells, while the environmental scanning electron microscopy showed the rapid emergence of sporangiophores with dispersed sporangia around the stomata. For fuorescence microscopy, the infected leaf samples were stained with Fluorescent Brightener 28 and Calcofuor White, which react with β-glucans present in the mycelial walls, sporangiophores and sporangia. Calcofour White was found to be the most suitable for studying the structural morphology of the pathogen. Therefore, samples observed by confocal laser scanning microscopy (CLSM) were pre-treated with Calcofuor White, as well as with Syto-13 that can stain the cell nuclei. Among the four microscopic techniques, CLSM is ideal for observing live host-pathogen interaction and studying the developmental processes of the pathogen in the host tissues. The use of diferent microscopic bioimaging techniques to study pathogenesis will enhance our understanding of the morphological features and development of the infectious propagules in the host. Many oomycete plant pathogens cause a considerable loss in food crops, including cereals, legumes, oil seeds, vegetables, and fruit crops1.
    [Show full text]
  • Supplemental Material
    Supplemental material Supplementary Figures ........................................................................................................................................... 2 Figure S1: GC distribution per origin for all nine diatom species. ......................................................................................... 2 Figure S2: Distribution of HGT genes across chromosome-level diatom genomes. .............................................................. 3 Figure S3: CDS length per age category per origin across species. ........................................................................................ 4 Figure S4: Gene ontology enrichment of HGT genes across diatoms. ................................................................................... 5 Figure S5: Functional domain enrichment of HGT genes across diatoms.............................................................................. 6 Figure S6: Correlation between diatom gene abundance and nitrate concentration at surface depth. ............................... 7 Figure S7: Correlation between diatom gene abundance and sampling day length at surface depth. ................................. 8 Figure S8: Correlation between diatom gene abundance and water temperature at surface depth. .................................. 9 Figure S9: Correlation between diatom gene abundance and iron concentration at surface depth. ................................. 10 Figure S10: Gene organization of the bifid shunt operon. .................................................................................................
    [Show full text]
  • October-2009-Inoculum.Pdf
    Supplement to Mycologia Vol. 60(5) October 2009 Newsletter of the Mycological Society of America — In This Issue — Feature Article Fungal zoospores are valuable food Fungal zoospores are valuable food resources in aquatic ecosystems resources in aquatic ecosystems MSA Business President’s Corner By Frank H. Gleason, Maiko Kagami, Secretary’s Email Express Agostina V. Marano and Telesphore Simi-Ngando MSA Officers 2009 –2010 MSA 2009 Annual Reports Fungal zoospores are known to contain large quantities Minutes of the 2009 MSA Annual Council Meeting Minutes of the MSA 2009 Annual Business Meeting of glycogen and lipids in the form of endogenous reserves. MSA 2009 Award Winners Lipids are considered to be high energy compounds, some of MSA 2009 Abstracts (Additional) which are important for energy storage. Lipids can be con - Mycological News A North American Flora for Mushroom-Forming Fungi tained in membrane bound vesicles called lipid globules Marine Mycology Class which can easily be seen in the cytoplasm of fungal Mycohistorybytes Peripatetic Mycology zoospores with both the light and electron microscopes Student Research Opportunities in Thailand (Munn et al . 1981; Powell 1993; Barr 2001). Koch (1968) MSA Meeting 2010 MycoKey version 3.2 and Bernstein (1968) both noted variation in the size and MycoRant numbers of lipoid globules within zoospores in the light mi - Dr Paul J Szaniszlo croscope. The ultrastructure of the lipid globule complex Symposium : Gondwanic Connections in Fungi Mycologist’s Bookshelf was carefully examined by Powell and Roychoudhury A Preliminary Checklist of Micromycetes in Poland (1992). Fungal Pathogenesis in Plants and Crops Pathogenic Fungi in the Cryphonectriaceae Preliminary studies reviewed by Cantino and Mills Recently Received Books (1976) revealed a rich supply of lipids in the cells of Blasto - Take a Break cladiella emersonii .
    [Show full text]
  • Australasian Lichenology Australasian Lichenology Number 45, July 1999 Number 45, July 1999
    Australasian Lichenology Australasian Lichenology Number 45, July 1999 Number 45, July 1999 Byssoloma sublmdulatllm lmm Byssoloma subdiscordans lmm ANNOUNCEMENTS Dampier 300, Biodiversity in Australia, Perth, 1999 .................................. ....... 2 14th meeting of Australasian lichenologists, Melbourne, 1999 ......................... 2 4th IAL Symposium, Barcelona, 2000 ..... .. .......................................................... 2 The Southern Connection, Christchurch, 2000 .. ............................ ..................... 3 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Archer, AW (40}-Pertusaria knightiana MUll. Arg........................................... 4 Elix, JA; Streimann, H (41}-Parmeliaceae. .................................... .. ................ 5 ADDITIONAL LICHEN RECORDS FROM NEW ZEALAND Galloway, DJ; Knight, A; Johnson, PN; Hayward, BW (30)-Polycoccum galli­ genum .. ............................................................................................................... 8 ARTICLES Lumbsch, HT-Notes on some genera erroneously reported for Australia ........ 10 Elix, JA; McCaffery, LF-Three new tridepsides in the lichenPseudocyphellaria billardierei ................................................................................ .. ................ ..... 12 Trinkaus, U; Mayrhofer, H; Matzer, M-Rinodinagennarii (Physciaceae), a wide­ spread species in the temperate regions of the Southern Hemisphere ........ 15 Malcolm, WM; Vezda, A; McCarthy, PM; Kantvilas, G-Porina subapplanata, a new species from
    [Show full text]
  • Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
    available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N.
    [Show full text]