October-2009-Inoculum.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

October-2009-Inoculum.Pdf Supplement to Mycologia Vol. 60(5) October 2009 Newsletter of the Mycological Society of America — In This Issue — Feature Article Fungal zoospores are valuable food Fungal zoospores are valuable food resources in aquatic ecosystems resources in aquatic ecosystems MSA Business President’s Corner By Frank H. Gleason, Maiko Kagami, Secretary’s Email Express Agostina V. Marano and Telesphore Simi-Ngando MSA Officers 2009 –2010 MSA 2009 Annual Reports Fungal zoospores are known to contain large quantities Minutes of the 2009 MSA Annual Council Meeting Minutes of the MSA 2009 Annual Business Meeting of glycogen and lipids in the form of endogenous reserves. MSA 2009 Award Winners Lipids are considered to be high energy compounds, some of MSA 2009 Abstracts (Additional) which are important for energy storage. Lipids can be con - Mycological News A North American Flora for Mushroom-Forming Fungi tained in membrane bound vesicles called lipid globules Marine Mycology Class which can easily be seen in the cytoplasm of fungal Mycohistorybytes Peripatetic Mycology zoospores with both the light and electron microscopes Student Research Opportunities in Thailand (Munn et al . 1981; Powell 1993; Barr 2001). Koch (1968) MSA Meeting 2010 MycoKey version 3.2 and Bernstein (1968) both noted variation in the size and MycoRant numbers of lipoid globules within zoospores in the light mi - Dr Paul J Szaniszlo croscope. The ultrastructure of the lipid globule complex Symposium : Gondwanic Connections in Fungi Mycologist’s Bookshelf was carefully examined by Powell and Roychoudhury A Preliminary Checklist of Micromycetes in Poland (1992). Fungal Pathogenesis in Plants and Crops Pathogenic Fungi in the Cryphonectriaceae Preliminary studies reviewed by Cantino and Mills Recently Received Books (1976) revealed a rich supply of lipids in the cells of Blasto - Take a Break cladiella emersonii . Since then, the chemical composition of Hooked on Marine Mycology Veggie Kabobs lipids, including both fatty acids and sterols, has been char - Mycological Classifieds acterized in a number of genera of zoosporic fungi, in the Mold testing and identification services Mycological Jobs Blastocladiomycota and Chytridiomycota by Southall et al. Postdoctoral Research Associate - Plant and Microbial Ecology (1977) and Wheete et al . (1989) and in the Neocalli - Ph.D. Graduate Research Assistant - Plant and Microbial Ecology mastigomycota by Kemp et al . (1984) and Koppová et al . Graduate Research Assistantship in Mycology Mycology On-Line (2008). Calendar of Events The roles of lipids in the intermediary metabolism have Sustaining Members been studied by Cantino and his colleagues during different — Important Dates — stages of development in B. emersonii . As part of their re - November 15, 2009 search they found that endogenous reserves were consumed Deadline for submission to Inoculum 60(6) October 26-30, 2009 during the motile phase of the zoospores (Suberkropp & Fungal Conservation: science, infrastructure and politics Cantino 1973). We must assume that endogenous reserves Whitby, North Yorkshire , UK are also consumed by zoospores of other genera since ex - November 15-19, 2009 Asian Mycological Congress (AMC2009) & ogenous substrates are often absent from the external envi - XIth International Marine and Freshwater Mycology ronment. These reserves presumably provide energy for the Symposium (IMFMS) National Museum of Natural Science, Taichung, Taiwan movement of flagella during the motile phase which can last November 26-29, 2009 for up to several hours. Later we would expect these re - NAMA/GSMS Foray serves to provide energy for the fungi during attachment and Lafayette, LA December 6-10, 2009 germination of zoospores on the appropriate substrates. X International Fungal Biology Conference There is evidence that the total lipid content of B. emersonii Ensenada, Mexico February 15-19, 2010 zoospores decreases quickly after germination (Smith & Sil - Gondwanic Connections in Fungi Symposium verman 1973), but changes in lipid composition during the Bariloche, Argentina life cycle of other fungi have not been studied. There are other significant functions for the high energy Editor — Jinx Campbell Dept. of Coastal Sciences, Gulf Coast Research Lab compounds found in fungal zoospores, especially as food re - University of Southern Mississippi sources for other organisms. For example, anaerobic 703 East Beach Drive, Ocean Springs, MS 39564 Telephone: (228) 818-8878, Fax: (228) 872-4264 Continued on following page Email: [email protected] zoosporic fungi in the rumen and hind gut of herbivo - The upper size limit of most of the free-living HF rous mammals provide lipids which are known to be cells is approximately 5 µm in diameter which is important for the nutrition of the host animals (Kemp about the size of many fungal zoospores. However, et al. 1984). Cantino and Mills (1976) noted that the many of the microbes in the HF group have not been cells of Blastocladiella emersonii contain a rich sup - correctly identified (Lefèvre et al. 2007). The use of ply of carbohydrates, proteins, lipids and nucleic acids molecular methods, mainly environmental rDNA in their cytoplasm. This is undoubtedly true for all PCR for cloning and sequencing, has revealed many zoosporic fungi. For this reason we would expect fun - species of zoosporic fungi in pelagic ecosystems gal zoospores to be nutritious food items for many (Lefèvre et al. 2007; 2008). Fungal zoospores along consumers in aquatic ecosystems. In this paper we with other groups of HF are now thought to play key - will focus on the roles of fungal zoospores as food re - stone roles in aquatic food webs. Previously, the sources. modes of nutrition for all HF were thought to be re - Fungal spores and hyphae in general are known to stricted to bacterivory (Strom 2000), but fungal be eaten by a large number of different consumers in zoospores are not bacterivorous (Gleason et al . 2009). both aquatic and soil ecosystems including a variety Many zoosporic fungi can grow in the laboratory of mycophagous protozoa [amoebae (Old & Dar - on minimal synthetic media containing one carbon byshire 1978), flagellates (Hekman et al . 1992) and source such as cellulose, xylan, starch or chitin along ciliates (Petz et al. 1985)], detritivores (Arsuffi & with salts containing nitrate, sulphate and phosphate Suberkropp 1989), grazers such as filter feeding zoo - and other essential minerals (Gleason et al . 2008). plankton (Kagami et al . 2004) and benthic suspension Therefore, we would expect many zoosporic fungi to feeders (Bärlocher & Brendelberger 2004). Since grow as saprobes on allochthonous (imported) plant most of these consumers do not discriminate between and animal materials in environments which are gen - food resources except by size we would expect erally poor in carbon compounds. In these environ - zoospores as well as hyphae and nonmotile spores to ments zoosporic fungi are capable of providing many be eaten by many of these consumers, although pub - organic compounds which are necessary for the lished records are lacking. Thus fungal zoospores are growth of consumers but which are otherwise un - probably involved in many different food chains available. When this happens complex food webs ap - (Gleason et al . 2008). pear. Another important ecological role for fungal The complexity of interactions in food webs re - zoospores involves trophic upgrading. Presumably sulting from parasitism can be illustrated by one ex - many consumers must obtain at least some essential ample, the genus Coelomomyces . The life cycles of nutrients from their food sources because these com - many species in this genus involve an obligate alter - pounds cannot be produced de novo . One example of nation between two hosts: various species of mosqui - trophic upgrading is found in the cladoceran Daphnia . to larva and various species of copepods or ostracods Recent research has shown that zoospores of the par - (Whisler et al . 2009). These parasites greatly impact asitic chytrid, Zygorhizidium , are quite rich in polyun - the population sizes of both hosts. Furthermore, saturated fatty acids (PUFAs) and cholesterols, which zoospores of these parasites are eaten by grazers and are important nutrients for the cladoceran zooplank - filter feeders impacting their growth rates as well. ter, Daphnia (Kagami et al . 2007). These zoospores Therefore, populations of many different organ - are found to facilitate the trophic transfer from the isms directly and indirectly benefit from the high en - inedible large diatom, Asterionella , and the growth of ergy lipids stored in fungal zoospores. Many unknown Daphnia (Kagami et al . 2007). food chains are currently being identified (Gleason et Many species of zoosporic fungi have been re - al. 2008; Lefevre et al. 2008). This adds to the com - ported as saprobes on plant and animal materials and plexity and therefore the stability of aquatic food as parasites of both prokaryotic (i.e. cyanobacteria) webs (Lafferty et al . 2008). and eukaryotic phytoplankton, flowering plants, ro - —Frank H. Gleason tifers, nematodes, microscopic crustaceans (such as School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia copepods, ostracods and cladocera) and aquatic larvae of insects (such as diptera) in aquatic ecosystems —Maiko Kagami Department of Environmental Sciences, Toho University, Miyama (Sparrow 1960; Karling 1977; Powell 1993; Shearer 2-2-1, Funabashi, 275-8510 Japan et al. 2007
Recommended publications
  • (63) Continuation Inspart of Application No. PCT RE"SE SEN"I", "ES"E"NE
    US 2010.0086647A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0086647 A1 Kristiansen (43) Pub. Date: Apr. 8, 2010 (54) FEED OR FOOD PRODUCTS COMPRISING filed on Jan. 25, 2006, provisional application No. FUNGALMATERAL 60/690,496, filed on Jun. 15, 2005. (75) Inventor: Bjorn Kristiansen, Frederikstad (30) Foreign Application Priority Data (NO) May 13, 2005 (DK) ........................... PA 2005 00710 Correspondence Address: Jun. 15, 2005 (DK). ... PA 2005 OO88O BROWDY AND NEIMARK, P.L.L.C. Jul. 15, 2005 (DK) ....................... PCTFDKO5/OO498 624 NINTH STREET, NW Jan. 25, 2006 (DK)........................... PA 2006 OO117 SUTE 300 WASHINGTON, DC 20001-5303 (US) Publication Classification 51) Int. Cl. (73)73) AssigneeA : MEDMUSHAS(DK) s HORSHOLM ( A2.3L I/28 (2006.01) A23K L/18 (2006.01) (21) Appl. No.: 11/914,318 A23K L/6 (2006.01) CI2P 19/04 (2006.01) (22) PCT Filed: May 11, 2006 AOIK 6L/00 (2006.01) (86). PCT NO. PCT/DKO6/OO2S3 (52) U.S. Cl. ................................ 426/62: 426/2: 119/230 S371 (c)(1) (57) ABSTRACT (2), (4) Date: Dec. 1, 2009 The present invention relates to feed and food compositions comprising material obtained by fermenting fungi of the Related U.S. Application Data Basidiomycetes family in a liquid medium. Interestingly, (63) DK2005/000498,continuation inspart filed onof Jul.application 15, 2005. No. PCT enhanceRE"SE Survival SEN"I",and/or support "ES"E"NE growth of normal, healthy (60) Provisional application No. 60/690,496, filed on Jun. animals. Furthermore, the compounds may modulate the 15, 2005, provisional application No.
    [Show full text]
  • Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County
    LA-13384-MS A Survey of Macromycete Diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County A Preliminary Report Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. Edited by Hector Hinojosa, Group CIC-1 Photocomposition by Belinda Gutierrez, Group ESH-20 Cover: A fire road leading away from the Pajarito Ski Hill area where high-altitude surveys took place. (Photo by Fran J. Rogers.) An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
    [Show full text]
  • A Nomenclatural Study of Armillaria and Armillariella Species
    A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Printed in Eko-trykk A/S, Førde, Norway Printing date: 1. August 1995 ISBN 82-90724-14-4 ISSN 0802-4966 A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway 6 Authors address: Center for Forest Mycology Research Forest Products Laboratory United States Department of Agriculture Forest Service One Gifford Pinchot Dr. Madison, WI 53705 USA ABSTRACT Once a taxonomic refugium for nearly any white-spored agaric with an annulus and attached gills, the concept of the genus Armillaria has been clarified with the neotypification of Armillaria mellea (Vahl:Fr.) Kummer and its acceptance as type species of Armillaria (Fr.:Fr.) Staude. Due to recognition of different type species over the years and an extremely variable generic concept, at least 274 species and varieties have been placed in Armillaria (or in Armillariella Karst., its obligate synonym). Only about forty species belong in the genus Armillaria sensu stricto, while the rest can be placed in forty-three other modem genera. This study is based on original descriptions in the literature, as well as studies of type specimens and generic and species concepts by other authors. This publication consists of an alphabetical listing of all epithets used in Armillaria or Armillariella, with their basionyms, currently accepted names, and other obligate and facultative synonyms.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Wood Chip Fungi: Agrocybe Putaminum in the San Francisco Bay Area
    Wood Chip Fungi: Agrocybe putaminum in the San Francisco Bay Area Else C. Vellinga Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley CA 94720-3102 [email protected] Abstract Agrocybe putaminum was found growing on wood chips in central coastal California; this appears to be the first record for North America. A short description of the species is given. Its habitat plus the characteristics of wood chip denizens are discussed. Wood chips are the fast food of the fungal world. The desir- able wood is exposed, there is a lot of it, and often the supply is replenished regularly. It is an especially good habitat for mush- room species that like it hot because a thick layer of wood chips is warmed relative to the surrounding environment by the activity of bacteria and microscopic fungi (Brown, 2003; Van den Berg and Vellinga, 1998). Thirty years ago wood chips were a rarity, but nowadays they are widely used in landscaping and gardening. A good layer of chips prevents weeds from germinating and taking over, which means less maintenance and lower costs. Chips also diminish evaporation and keep moisture in the soil. Trees and shrubs are often shredded and dumped locally, but there is also long-dis- tance transport of these little tidbits. Barges full of wood mulch cruise the Mississippi River, and trucks carry the mulch from city to city. This fast food sustains a steady stream of wood chip fungi that, as soon as they are established, fruit in large flushes and are suddenly everywhere. The fungi behave a bit like morels after a Figure 1.
    [Show full text]
  • Chytridiomycosis Causes Amphibian Mortality Associated with Population Declines in the Rain Forests of Australia and Central America
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9031–9036, July 1998 Population Biology Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America LEE BERGERa,b,c,RICK SPEAREa,PETER DASZAKd,D.EARL GREENe,ANDREW A. CUNNINGHAMf,C.LOUISE GOGGINg, RON SLOCOMBEh,MARK A. RAGANi,ALEX D. HYATTb,KEITH R. MCDONALDj,HARRY B. HINESk,KAREN R. LIPSl, GERRY MARANTELLIm, AND HELEN PARKESb aSchool of Public Health and Tropical Medicine, James Cook University, Townsville, Queensland 4811, Australia; bAustralian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organization, Ryrie Street, Geelong, Victoria 3220, Australia; dSchool of Life Sciences, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, United Kingdom; eMaryland Animal Health Laboratory, College Park, MD 20740; fInstitute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom; gCommonwealth Scientific and Industrial Research Organization, Marine Research, Hobart, Tasmania 7001, Australia; hVeterinary Clinical Centre, University of Melbourne, Werribee, Victoria 3030, Australia; iCanadian Institute for Advanced Research, Program in Evolutionary Biology, National Research Council of Canada, Halifax, NS Canada B3H 3Z1; jConservation Strategy Branch, Queensland Department of Environment, Atherton, Queensland 4883, Australia; kConservation Resource Unit, Queensland Department of Environment, Moggill, Queensland 4070, Australia; lDepartment of Zoology, Southern Illinois University, Carbondale, IL 62901-6501; and mAmphibian Research Centre, 15 Suvla Grove, Nth Coburg, Victoria 3058, Australia Edited by Robert May, University of Oxford, Oxford, United Kingdom, and approved May 18, 1998 (received for review March 9, 1998) ABSTRACT Epidermal changes caused by a chytridiomy- primary degraders or saprobes, using substrates such as chitin, cete fungus (Chytridiomycota; Chytridiales) were found in plant detritus, and keratin.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Supplemental Material
    Supplemental material Supplementary Figures ........................................................................................................................................... 2 Figure S1: GC distribution per origin for all nine diatom species. ......................................................................................... 2 Figure S2: Distribution of HGT genes across chromosome-level diatom genomes. .............................................................. 3 Figure S3: CDS length per age category per origin across species. ........................................................................................ 4 Figure S4: Gene ontology enrichment of HGT genes across diatoms. ................................................................................... 5 Figure S5: Functional domain enrichment of HGT genes across diatoms.............................................................................. 6 Figure S6: Correlation between diatom gene abundance and nitrate concentration at surface depth. ............................... 7 Figure S7: Correlation between diatom gene abundance and sampling day length at surface depth. ................................. 8 Figure S8: Correlation between diatom gene abundance and water temperature at surface depth. .................................. 9 Figure S9: Correlation between diatom gene abundance and iron concentration at surface depth. ................................. 10 Figure S10: Gene organization of the bifid shunt operon. .................................................................................................
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • 2013 Mystic, CT
    Table of Contents & Acknowledgements Welcome note ……………………………………………………………..….. 2 General program …………………………………………………………..….. 3-7 Poster presentation summary …………………………………..……………… 8-10 Oral abstracts (in order of presentation) …….………………………………… 11-25 Poster abstracts (numbered presentation boards) ……..……….……………… 26-38 Biographies of our distinguished speakers: James Carlton, Mark Edlund, Alan Steinman ……………. 39 Sincere appreciation The co-conveners acknowledge the generous support of our sponsors for this event, Woods Hole Sea Grant, Dominion Resources, Connecticut Sea Grant. Our vendors include Balogh Books (Scott Balogh), Environmental Proteomics (Jackie Zorz), Microtech Optical (Mark Specht), Reed Mariculture (Eric Henry), Saltwater Studio (Mary Jameson), and Willywaw (Ashley Van Etten). We thank our student volunteers: Shelby Rinehart, Meg McConville, Emily Bishop (U. Rhode Island) and Catharina Grubaugh, Sarah Whorley, and Xian Wang (Fordham U.) for their assistance in registration and meeting audio/visual support. We thank the award judges for the Wilce Graduate Oral Award Committee (Brian Wysor (Chair), Nic Blouin, Ursula Röse), Trainor Graduate Poster Award Committee (Karolina Fučíková (Chair), Charles O'Kelly, Michele Guidone, Ruth Schmitter) and President’s Undergraduate Presentation (oral & poster) Award Committee (Anita Klein (Chair), Julie Koester, Dion Durnford, Kyatt Dixon, Ken Hamel). We also thank the session moderators: Jessie Muhlin, Lorraine Janus, Anne-Marie Lizarralde, Dale Holen, Hilary McManus, and Amy Carlile. We are grateful to our invited speakers Jim Carlton, Mark Edlund, and Alan Steinman. We extend sincere gratitude to Bridgette Clarkston, who designed the 50th NEAS logo and Nic Blouin for modifying that logo for this meeting, and the staff at the Mystic Hilton, particularly Eileen Menard, for providing logistical support for this meeting. 1 Welcome to the 52nd Northeast Algal Symposium! We are delighted to welcome everyone to Mystic, Connecticut, and the Mystic Hilton.
    [Show full text]
  • 臺灣紅樹林海洋真菌誌 林 海 Marine Mangrove Fungi 洋 真 of Taiwan 菌 誌 Marine Mangrove Fungimarine of Taiwan
    臺 灣 紅 樹 臺灣紅樹林海洋真菌誌 林 海 Marine Mangrove Fungi 洋 真 of Taiwan 菌 誌 Marine Mangrove Fungi of Taiwan of Marine Fungi Mangrove Ka-Lai PANG, Ka-Lai PANG, Ka-Lai PANG Jen-Sheng JHENG E.B. Gareth JONES Jen-Sheng JHENG, E.B. Gareth JONES JHENG, Jen-Sheng 國 立 臺 灣 海 洋 大 G P N : 1010000169 學 售 價 : 900 元 臺灣紅樹林海洋真菌誌 Marine Mangrove Fungi of Taiwan Ka-Lai PANG Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Chilung 20224, Taiwan (R.O.C.) Jen-Sheng JHENG Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Chilung 20224, Taiwan (R.O.C.) E. B. Gareth JONES Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand 國立臺灣海洋大學 National Taiwan Ocean University Chilung January 2011 [Funded by National Science Council, Taiwan (R.O.C.)-NSC 98-2321-B-019-004] Acknowledgements The completion of this book undoubtedly required help from various individuals/parties, without whom, it would not be possible. First of all, we would like to thank the generous financial support from the National Science Council, Taiwan (R.O.C.) and the center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University. Prof. Shean- Shong Tzean (National Taiwan University) and Dr. Sung-Yuan Hsieh (Food Industry Research and Development Institute) are thanked for the advice given at the beginning of this project. Ka-Lai Pang would particularly like to thank Prof.
    [Show full text]
  • Algae from the Arid Southwestern United States: an Annotated Bibliography
    SERI/TR-231-1947 UC Category: 61a DE83011976 Algae from the Arid Southwestern United States: An Annotated Bibliography A Subcontract Report W. H. Thomas S. R. Gaines Institute of Marine Resources Scripps Institute of Oceanography University of California, San Diego La Jolla, California 92092 June 1983 Prepared under Subcontract No. XK-09111-1 SERI Technical Monitor: M. Lowenstein Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401 Prepared for the U.S. Department of Energy Contract No. EG-77-C-01-4042 Printed in the United States of America Available from: National Technical Information service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche $4.50 Printed Copy $14.50 NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any ·of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. FOREWORD This report is an annotated bibliography compiled by Scripps Institute of Oceanography for the Solar Energy Research Institute (SERI) under Subcontract XK-09111-1, using funds provided by the Biomass Energy Technology Divison of the Department of Energy. This report is provided to the research community in the hope that it will be an invaluable tool for future research in field collection and identification of microalgae in desert environments.
    [Show full text]