(12) Patent Application Publication (10) Pub. No.: US 2011/0110817 A1 Lupo Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0110817 A1 Lupo Et Al US 2011 0110817A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0110817 A1 Lupo et al. (43) Pub. Date: May 12, 2011 (54) RARE EARTH REMOVAL OF COLORANTS Publication Classification (51) Int. Cl. (75) Inventors: Joseph A. Lupo, Henderson, NV A6IL 2/12 (2006.01) (US); Joseph R. Pascoe, Las Vegas, COIF 1700 (2006.01) NV (US) A6IL 2/10 (2006.01) A6IL 2/08 (2006.01) (73) Assignee: MOLYCORP MINERALS, LLC, A6IL 2/6 (2006.01) Greenwood Village, CO (US) C09K 3/00 (2006.01) C09B 62/00 (2006.01) C09B 67/44 (2006.01) (21) Appl. No.: 12/942,847 C09C I/62 (2006.01) CSK 3/08 (2006.01) (22) Filed: Nov. 9, 2010 (52) U.S. Cl. ............... 422/21: 423/263; 422/24; 422/22: 422/28: 422/292; 252/182.33; 8/543; 8/618: Related U.S. Application Data 106/403; 524/440 (60) Provisional application No. 61/259,314, filed on Nov. (57) ABSTRACT 9, 2009, provisional application No. 61/386,347, filed The present disclosure is directed to a method and system for on Sep. 24, 2010, provisional application No. 61/386, contacting a colorant-contaminated aqueous Solution with a 365, filed on Sep. 24, 2010, provisional application rare earth-containing composition to form a treated Solution No. 61/386,394, filed on Sep. 24, 2010. substantially depleted of the colorant. Patent Application Publication May 12, 2011 Sheet 1 of 3 US 2011/O110817 A1 COLORANT-CONTAINING AGUEOUS SOLUTION / Y2Y120 V OPTIONAL PRE-TREATMENT / N-me O O O le1 104 112 RARE EARTH-CONTAINING CONTACT OF SOLUTION WITH RARE COMPOSITION EARTH-CONTAINING COMPOSITION - - w 132 - - - - - - - ( REGENERATION OPTIONAL POST-TREATMENT // N / V / t New aaaaaaaaaaaaaa- aaaaaaaaa- ax- e1 108 - - -/ wn) w was w aw in 128 CONTAMINATE- /SEPARATION OF CONTAMINATE-Y// CONTAININGCOMPOSITION RAREEARTH V CONTAININGCOMPOSITION RARE EARTH / - - - - - - N- - - - -1 TREATED SOLUTION F.G. 1 Patent Application Publication May 12, 2011 Sheet 2 of 3 US 2011/O110817 A1 S S S& Patent Application Publication May 12, 2011 Sheet 3 of 3 US 2011/O110817 A1 Fig. 5B Fig. 7B US 2011/011 0817 A1 May 12, 2011 RARE EARTHREMOVAL OF COLORANTS 0009. Another option is to pass the colorant-containing aqueous stream through an expensive ultrafilter, nanofilter, CROSS REFERENCE TO RELATED and/or reverse osmosis membrane system to separate the APPLICATION colorant from the water. Typically, the separation is based on molecular size. 0001. The present application claims the benefits of U.S. 0010 Yet another option is to use physical-chemical colo Provisional Application Ser. No. 61/259,314, filed Nov. 9, rant removal methods. Coagulant agents, such as ferric salts 2009, entitled “Removal of Water Soluble Organic Dyes and aluminum polychloride, form flocks with the colorants, Using Cerium Oxide': 61/386,347, filed Sep. 24, 2010, which are then separated by filtration or sedimentation. entitled “Removal of a Dye From An Aqueous System Using 0011 Still yet another option is to biologically degrade the Rare Earths': 61/386,365, filed Sep. 24, 2010, entitled colorant with a microbe under aerobic and/or anaerobic con “Removal of a Colorant From An Aqueous System Using ditions. Typically the microbes are bacteria or fungi. Rare Earths”; and 61/386,394, filed Sep. 24, 2010, entitled 0012 Another option is to remove the colorant by an “Removal of a Pigment From An Aqueous System Using adsorption process. Colorants, such as dyes have high affini Rare Earths, each of which is incorporated herein by this ties for adsorbent materials. reference in its entirety. 0013 Although many techniques have been used to remove colorants, there is no single and economically attrac FIELD tive treatment that can effectively remove and/or decolorize 0002 The invention relates generally to removal of colo dyes and their decomposition products. rants and particularly to rare earth removal of colorants from SUMMARY aqueous Streams. 0014. These and other needs are addressed by the various BACKGROUND embodiments and configurations of the present invention. The invention relates generally to the removal of a selected 0003 Colorants are used in a wide variety of applications. component of a colorant composition from a contaminated Colorants, for example, are used in food products, textiles, aqueous Solution. personal care products, paints, and a host of other products. 0015. In an embodiment, a treatment method is provided Colorants typically comprise a dye or a pigment. that contacts a colorant-containing aqueous Solution with a 0004 The scale and growth of the dye industry is inextri rare earth-containing composition to form a treated solution cably linked to that of the textile industry. World textile pro substantially depleted of the colorant. duction has grown steadily to an estimated 35 million tons in 0016. In an embodiment, a treatment system is provided 1990, and the estimated production of dyes in 2009 was that includes: around 120 million tons. 0017 an inlet for a colorant-containing aqueous solution; 0005 With the increased demand for textile products, the 0018 a rare earth-containing composition in a colorant textile industry and its wastewaters have been increasing pro removal Zone; and portionately, making it one of the main sources of water 0019 an outlet for a treated aqueous solution substantially pollution worldwide. The release of colorant-containing depleted of the colorant. effluents into the environment is undesirable, not only 0020. In an embodiment, the method and/or system pro because of their color but also because many colorants and duce a contaminated rare earth-containing composition their breakdown products are toxic and/or mutagenic to life. including the rare earth and the colorant sorbed on the rare Many of the colorants are chemically stable and without earth. In other embodiments, the colorant is degraded or adequate treatment they can remain in the environment for an decomposed by the rare earth, Such as by destruction of a extended period of time. Furthermore, many colorants in chromophore. particular pigments comprise heavy metals. In addition to 0021. In an embodiment, a regeneration method is pro environmental pollution, the textile industry contributes to vided that includes the steps: water shortage by consuming large amounts of potable water. 0022 (a) providing a contaminated rare earth-containing In many countries where potable water is scarce, this large composition comprising a rare earth and a colorant Sorbed on water consumption has become intolerable and wastewater the rare earth and recycling has been recommended to decrease the water 0023 (b) sterilizing the contaminated rare earth-contain requirements. ing composition to remove the colorant. 0006. As a consequence of these issues, increasingly strin 0024. The embodiments can provide a number of advan gent government air and water pollution control regulations tages depending on the particular configuration. For example, are restricting colorant use. Various organizations and/or in many applications rare earth-containing compositions can agencies, as for example, the American Organization of Ana economically and effectively decolorize or remove colorants. lytical Chemists, the World Health Organization, and the US Accordingly, the embodiments can overcome the environ Environmental Protection Agency have addressed the issue of mental problems associated with colorant discharge and air and water pollution arising from colorant usage. enable wastewater recycling to decrease water requirements 0007. However, removal of colorants from aqueous of the textile industry. The rare earth-containing composition streams can be difficult. can treat colorant contaminated aqueous solutions to con 0008. One option to remove colorants from water streams tamination levels in compliance with the increasingly strin is to add expensive chemicals that destroy or react with the gent air and water pollution control regulations by private and colorant. Chemical oxidation uses a suitable oxidizing agent, governmental organizations, such as the American Organiza Such as OZone, hydrogen peroxide, or permanganate to tion of Analytical Chemists, the World Health Organization, change the chemical composition of a colorant, such as a dye. and the US Environmental Protection Agency. US 2011/011 0817 A1 May 12, 2011 0025. These and other advantages will be apparent from taminant may be rendered non-toxic by converting the con the disclosure of the invention(s) contained herein. taminant into a non-toxic form or species. 0026. The term “a” or “an entity refers to one or more of 0037. A “dye' is a colorant, usually transparent, which is that entity. As such, the terms “a” (or “an”), “one or more' and soluble in an application medium. Dyes are classified accord “at least one' can be used interchangeably herein. It is also to ing to chemical structure, usage, or application method. They be noted that the terms “comprising”, “including, and “hav are composed of groups of atoms responsible for the dye ing can be used interchangeably. color, called chromophores, and intensity of the dye color, 0027. The terms “at least one”, “one or more', and “and/ or are open-ended expressions that are both conjunctive and called auxchromes. The chemical structure classification of disjunctive in operation. For example, each of the expressions dyes, for example, uses terms such as azo dyes (e.g., “at least one of A, B and C', 'at least one of A, B, or C, “one monoazo, disazo, trisazo, polyazo, hydroxyazo, carboxyazo, or more of A, B, and C. “one or more of A, B, or C and “A, carbocyclic azo, heterocyclic
Recommended publications
  • Wool Fiber Dyeing Machine Operator Course Code: TC WOOL 04
    Government of India Ministry of Textiles Textiles Committee Course Name: Wool Fiber Dyeing Machine Operator Course Code: TC WOOL 04 Version: 01 Developed by: Resource Support Agency (RSA), Textiles Committee, Ministry of Textiles, Government of India TABLE OF CONTENTS 1. Basic Textile Wet Processing Terms . 01 2. Brief of all Wet Processing Stages . 06 2.1. Grey Fabric Inspection . 07 2.2. Stitching . 07 2.3. Brushing . 07 2.4. Shearing/Cropping . 07 2.5. Singeing . 07 2.6. Desizing . 08 2.7. Scouring . 08 2.8. Bleaching . 09 2.10. Heat Setting . 09 2.11. Dyeing . 09 2.12. Printing . 11 2.13. Finishing . 11 2.14. Quality Assurance Laboratory . 12 2.15. Effluent Treatment Plant . 12 3. Introduction to Wool . 13 3.1. What is Wool? . 13 3.2. Types of Wool . 13 4. Composition of Wool . 15 4.1. Chemical Structure of Wool . 15 4.2. Morphological Structure of Wool . 16 5. Properties of Wool . 18 5.1. Physical properties of wool . 18 5.2. Chemical Properties of Wool . 19 5.3. End-Use Properties of Wool . 20 5.3.1 Uses and Application of Wool Fibres . 21 5.3.2 End Uses of Wool Fibres . 21 6. Wool Manufacturing Process . 22 Course: Wool Fiber Dyeing Machine Operator Developed by: Textiles Committee, Ministry of Textiles, Govt. of India 6.1. Flow Chart of Wool Processing . 22 6.2. Wool Manufacturing Processes . 22 6.2.1. Shearing . 23 6.2.2. Grading and Sorting . 23 6.2.3. Cleaning and Scouring . 24 6.2.4. Carding . 24 6.2.5.
    [Show full text]
  • Copper Alloy Sand Castings for General Applications1
    Designation: B584 – 09a Standard Specification for Copper Alloy Sand Castings for General Applications1 This standard is issued under the fixed designation B584; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. 1. Scope* B148 Specification for Aluminum-Bronze Sand Castings 1.1 This specification covers requirements for copper alloy B176 Specification for Copper-Alloy Die Castings sand castings for general applications. Nominal compositions B208 Practice for Preparing Tension Test Specimens for of the alloys defined by this specification are shown in Table Copper Alloy Sand, Permanent Mold, Centrifugal, and 1.2 This is a composite specification replacing former docu- Continuous Castings ments as shown in Table 1. B271 Specification for Copper-Base Alloy Centrifugal Castings NOTE 1—Other copper alloy castings are included in the following B369 Specification for Copper-Nickel Alloy Castings ASTM specifications: B22, B61, B62, B66, B67, B148, B176, B271, B427 Specification for Gear Bronze Alloy Castings B369, B427, B505/B505M, B763, B770, and B806. B505/B505M Specification for Copper Alloy Continuous 1.2 Component part castings produced to this specification Castings may be manufactured in advance and supplied from stock. In B763 Specification for Copper Alloy Sand Castings for such cases the manufacturer shall maintain a general quality Valve Applications certification of all castings without specific record or date of B770 Specification for Copper-Beryllium Alloy Sand Cast- casting for a specific casting.
    [Show full text]
  • Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 1
    Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 1 Doc Number: EDCS-661823 Last Revision Date: 04/30/2021 Policy Owner: Jack Allen Joe Johnson Policy Owner’s Org: Supply Chain Transformation: Sustainability Legal Market Access: Environmental Affairs Next Review Date: Upon changes in applicable global market access requirements Cisco Controlled Substances Specification Revision B6 Cisco Systems, Inc Page 1 of 35 CISCO CONFIDENTIAL All printed copies and duplicate soft copies are considered un-Controlled copies and the original on-line version should be referred for latest version Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 2 – Table of Contents – Executive Summary .................................................................................................................................... 3 Scope ........................................................................................................................................................... 3 Policy Statement ......................................................................................................................................... 3 1.1. Substances Restricted in Products ........................................................................................................... 3 1.2. Assessment Substances ............................................................................................................................ 7 1.3. Manufacturing Controlled Substances & Consumable Materials ..........................................................
    [Show full text]
  • Metallo Drain Processing by External Partners
    Stimulation of Substitution within a Circular Economy perspective, in the metals sector: concepts and examples University of Antwerp: Wednesday 7 November 2018 Dirk Goris – Bi challenging the recycling of Copper , Antwerp, Belgium, November 2018 Bismuth challenging the recycling of Copper and the metal primary balance Dirk Goris, Metallo Belgium 2018.11.07 Dirk Goris – Bi challenging the recycling of Copper , Antwerp, Belgium, November 2018 Metallo Onegroup, twosites • Founded in 1919 • 782 Million EUR of revenue in 2016 Metallo Belgium • 430 employees at Metallo Belgium and 85 employees at Metallo Spain • 40% of growth in workforce in last 10 years Metallo Spain We are an international company, that excels in recycling and refining non- ferrous materials. Dirk Goris – Bi challenging the recycling of Copper , Antwerp, Belgium, November 2018 2018.11.07 Dirk Goris – Bi challenging the recycling of Copper , Antwerp, Belgium, November 2018 3 Metallo Waste services We treat the most complex secondary raw materials purchased globally. Over 350,000 tons of these raw materials are recycled annually through the different stages of our recycling processes. Dirk Goris – Bi challenging the recycling of Copper , Antwerp, Belgium, November 2018 2018.11.07 Dirk Goris – Bi challenging the recycling of Copper , Antwerp, Belgium, November 2018 4 Metallo Product range We combine our unique technology and know-how to provide a variety of non- ferrous metal products, intermediates and minerals to our customers. Refined metals • Cu cathodes “B grade” min. 99,97% Cu • Sn ingots “MC brand” LME registered , Low Lead , CFSI compliant “conflict free”, min. 99,95% Sn • Pb ingots “MC brand” soft lead min.
    [Show full text]
  • HISTORY of METALLURGY 2Nd Edition
    A HISTORY OF METALLURGY 2nd Edition A HISTORY OF METALLURGY Second Edition R. F. Tylecote MANEY FOR THE INSTITUTE OF MATERIALS Book B0789 First published in paperback in 2002 by Maney Publishing 1 Carlton House Terrace London SW1Y 5DB for the Institute of Materials First published in 1976 Reprinted in 1979 2nd edn published 1992 © The Institute of Materials 1992 All rights reserved ISBN 1-902653-79-3 Printed and bound in the UK by Antony Rowe Ltd v Contents Preface to the Second Edition vii Foreword viii Acknowledgements ix Introduction xi 1 Metals and ores in the Neolithic period 1 2 The technique and development of early copper smelting 7 3 The Early Bronze Age 18 4 The Full Bronze Age 35 5 The Early Iron Age 47 6 The Roman Iron Age 62 7 The Migration and medieval period 75 8 Post-medieval metallurgy 95 9 The Industrial Revolution; AD 1720-1850 122 10 More recent times; AD 1850-1950 164 11 The contributions of the scientists 177 Appendixes: 188 Technical Glossary 188 Note on units of weight, stress, and hardness 190 Table of elements 190 Approximate date of start of metal ages 191 Chinese chronology 191 Journals consulted and abbreviations 191 Principal works consulted 193 Maps 1-6 194-198 Subject and name index 199 vii Preface to the Second Edition The first edition was published in 1976 and an enormous increase in the general interest in the subject of archeometallurgy has taken place since then. Much of this relates to the early phases and has been discussed in Proceedings of International Conferences.
    [Show full text]
  • THE WEST SHORE. December
    54 THE WEST SHORE. December HUM Ul'H BBONZ& THE PROSPECTOR. But even there the restless brain refuseas to be TELEPHONES IN' MINES. quiet, aud carries the weary dreamer on the A correspondent of the London Miniinj Ifmm ihe Minim ami Msotlfa Yrvm wings of imagination to scenes of splemlor, The telephone which has been placed iu the Journal vert the formula for comjiound where science vies with art in contributing to is Volumes have been written in times past set- Consolidated Virginia mine doiug its regular bronze, which he tielieves will be found of wants and wishes of those who worship ut ting forth th claims the duty like any other part of the apparatus wiile Usefulness to tneUl workers. The process to public esteem of the mammon's shrine, and he, for the time imagines of the from the otKce is invented by Mr. James Webster. .Mr. Web DUDieroui heroes of every age and clime. The himself a "bonatuta king, before whom all the mine. It runs down to the bot- object M to produce metallic alloys of shaft t suita- orators, poets, philanthropists itateamon, war- lesser lights in the financial firmament bow with tom the at the level. A fine ble with or without the addition ami admixture a Battering obaequlouaneaS ; hut he awakes in is used which is riors and othera who havo figured more copper wire insulated ami cov- of other metals or alloys, as required, for the orkss the morning with a headache, and "stubborn conspicuously ered with India rubber or gutta pereha. casting of cannon ami other large articles, also in the life drama of nations or facts and stern realities" staring him in the The ingots, slabs ami the like for rolling ami for localities, and whose deedi or words have been face.
    [Show full text]
  • Thin-Layer (Planar) Chromatography 2619
    III / DYES / Thin-Layer (Planar) Chromatography 2619 Thin-Layer (Planar) Chromatography P. E. Wall, Merck Limited, Poole, Dorset, UK that dyes are easily visualized on a chromatographic Copyright ^ 2000 Academic Press layer by their colour. Often slight differences in hue are more clearly seen on the layer than in solution and hence are easily distinguishable. It is therefore rarely Introduction necessary to employ detection reagents unless the area of interest is dye intermediates which may lack Synthetic dyes comprise a large group of organic, the conjugation needed in their molecular structure to organic salt and organometallic compounds which be coloured in visible light. Of course, there are number in the thousands. Most individual dyes are a large number of dyes which either exhibit Suores- assigned colour index (CI) numbers which helps to cence quenching in short wavelength ultraviolet (UV) identify structure and properties as well as identity light (254 nm) or naturally Suoresce by excitation in where a series of names have been used by the manu- long wavelength UV light (usually 366 nm). Where facturers for the same dye. Pigments are also listed separated dyes on the chromatographic layer do Su- and can be either organic or inorganic in nature. The oresce, the limit of sensitivity of detection is often in value of planar chromatography in the identiRcation the low nanogram or high picogram level. In the of dyes and separation of impurities and their quan- commercial environment, as dye quality can vary tiRcation is the main subject of this article. Synthetic from batch to batch and colour can be matched by dyes will be split into nine groups, the Rrst three being using different dyes, the planar chromatographic the major ones.
    [Show full text]
  • Imports of Benzenoid Chemicals and Products
    co p Z UNITED STATES TARIFF COMMISSION Washington IMPORTS OF BENZENOID CHEMICALS AND PRODUCTS 1 9 7 3 United States General Imports of Intermediates, Dyes, Medicinals, Flavor and Perfume Materials, and Other Finished Benzenoid Products Entered in 1973 Under Schedule 4, Part 1, of The Tariff Schedules of the United States TC Publication 688 United States Tariff Commission September 1 9 7 4 UNITED STATES TARIFF COMMISSION Catherine Bedell Chairman Joseph 0. Parker Vice Chairman Will E. Leonard, Jr. George M. Moore Italo H. Ablondi Kenneth R. Mason Secretary to the Commission Please address all communications to UNITED STATES TARIFF COMMISSION Washington, D.C. 20436 ERRATA SHEET Imports of Benzenoid Chemicals And'Produets, 1973 P. 94-- The 1973 data ascribed to Acrylonitrile-butadiene- styrene (ABS) resins actually included 8,216,040 pounds of Methyl- methacrylate-butadiene-styrene (MBS) resins. The revised figure for ABS resins alone is 23,823,791 pounds. CONTENTS (Imports under TSUS, Schedule 4, Parts 1B and 1C) Table No. Page 1. Benzenoid intermediates: Summary of U.S. general imports entered under Part 1B, TSUS, by competitive status, 1973___ 6 2. Benzenoid intermediates: U.S. general imports entered under Part 1B, TSUS, by country of origin, 1973 and 1972___ 6 3. Benzenoid intermediates: U.S. general imports entered under Part 1B, TSUS, showing competitive status,. 1973, 8 4. Finished benzenoid products: Summary of U.S. general im- ports entered under Part 1C, TSUS, by competitive status, 1973- 28 S. Finished benzenoid products: U.S. general imports entered under Part 1C, TSUS, by country of origin, 1973 and 1972--- 29 6.
    [Show full text]
  • Geological Society of America Special Papers
    Downloaded from specialpapers.gsapubs.org on October 1, 2010 Geological Society of America Special Papers Mining and Metallurgy in Ancient Perú Georg Petersen G. and William E. Brooks Geological Society of America Special Papers 2010;467;xvii-90 doi: 10.1130/2010.2467 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Special Papers Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2010 Geological Society of America Downloaded from specialpapers.gsapubs.org on October 1, 2010 Mining and Metallurgy in Ancient Perú by Georg Petersen G.
    [Show full text]
  • USE and ASSESSMENT of MARKER DYES USED with HERBICIDES
    SERA TR 96-21-07-03b USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Prepared by: Michelle Pepling1, Phillip H. Howard1, Patrick R. Durkin2, 1Syracuse Research Corporation 6225 Running Ridge Road North Syracuse, New York 13212-2509 2Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., Building 42C Fayetteville, New York 13066-0950 Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 TABLE OF CONTENTS TABLE OF CONTENTS .....................................................ii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................. iii 1. INTRODUCTION .....................................................1 2. CURRENT PRACTICE .................................................2 3. GENERAL CONSIDERATIONS .........................................3 3.1. DEFINITIONS .................................................3 3.2. CLASSES OF DYES .............................................4 3.3.
    [Show full text]
  • C89835 Lead-Free Bismuth Tin Bronze 89835 Color Bronze Family: Copper Bismuth Code
    C89835 Lead-Free Bismuth Tin Bronze 89835 Color Bronze Family: Copper Bismuth Code Bismuth Tin Bronze Alloy, C89835 is a lead-free replacement for C93200, C84400, and C83600. It is compliant with the “Reduction of Lead in Drinking Water Act”. This lead free alloy is used for faucets, pump components, water pump impellers, and pipe fittings in applications where potable water is concerned. C89835 retains 70% machinability with the addition of bismuth in place of lead. This lead free, bismuth alloy is continuous cast and available in rounds and tube. The “Reduction of Lead in Drinking Water Act”, was passed by Congress on 1/4/11 with an effective date of 1/4/14. The term lead-free as it pertains to C89835, calls out for “not more than a weighted average of .25% lead when used with respect to the wetted surfaces of pipes, pipe fittings, plumbing fittings and fixtures”. Other terms for this alloy are: C89835, lead free bronze, bismuth bronze, lead-free bismuth bronze, bismuth tin bronze, lead-free bismuth tin bronze. Related products: C93200; C83600; C84400 Available from stock Reference Specifications at Morgan Bronze in: Federal Military Ingot SAE CDA Specification Specification Number Rounds C89835 Equivalent specifications are verified and updated annually. Specifications shown are current as of May 4, 2018. Chemical Composition (%)** Cu Sn Pb Zn Fe Ni* Sb P S Al BI Si Tubes 85.0 – 6.0 – 0.09 2.0 – 0.20 1.00* 0.35 0.10 0.08 0.005 1.7 - 0.005 89.0*** 7.5 4.0 max.
    [Show full text]
  • Goulds 3316 Two Stage, Horizontally Split Case Pump 3316
    Goulds 3316 Two Stage, Horizontally Split Case Pump 3316 Two Stage, Horizontally Split Case Pumps designed for boiler feed, mine dewatering and other applications requiring moderately high heads with a wide range of service conditions • Capacities to 681 m3/h (3,000 GPM) • Heads to 305 m (1,000 feet) • Temperatures to 177°C (350°F) • Pressures to 3,792 kPa (550 PSIG) Design Features Casing Removal of upper half permits inspection, maintenance or removal of rotating element without disturbing piping or pump-to-motor alignment Services Impellers Hydraulically balanced – opposed for axial balance. • Boiler Feed Opposed cut-waters provide radial balance. • Mine De-Watering Wear Rings Easily replaced, protect against casing wear. • Booster Maximum Interchangeability • High Pressure Process Reduces inventory requirements. • Condensate Duplex Thrust Bearing • High Pressure Cleaning Provides high thrust capability. Materials of Construction Available in all iron or bronze fitted. Most sizes available in steel and stainless steel. 2 3316 3316 Performance Curve 3560 R.P.M. Except as noted. Group S Group M Group L Specifications Stuffing Box Standard packed box has 5 rings of die-formed packing Shaft and a split lantern ring. Standard gland has tapped Short span keeps deflection to a minimum. Radius fillets openings for quench or cooling liquid and a ring of are rolled into the shoulders at threaded portions to packing to prevent liquid from spraying or traveling along increase shaft fatigue strength. Radius fillets also machined shaft outside gland. into keyways to distribute stress more evenly along the Unbalanced, balanced or double mechanical seals are shaft. available. Shaft Sleeve Bearings Threaded against impeller hub, and free to expand or Thrust bearing is a duplex angular contact ball bearing.
    [Show full text]