Development of Textile Dyeing Using the Green Supercritical Fluid Technology: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wool Fiber Dyeing Machine Operator Course Code: TC WOOL 04
Government of India Ministry of Textiles Textiles Committee Course Name: Wool Fiber Dyeing Machine Operator Course Code: TC WOOL 04 Version: 01 Developed by: Resource Support Agency (RSA), Textiles Committee, Ministry of Textiles, Government of India TABLE OF CONTENTS 1. Basic Textile Wet Processing Terms . 01 2. Brief of all Wet Processing Stages . 06 2.1. Grey Fabric Inspection . 07 2.2. Stitching . 07 2.3. Brushing . 07 2.4. Shearing/Cropping . 07 2.5. Singeing . 07 2.6. Desizing . 08 2.7. Scouring . 08 2.8. Bleaching . 09 2.10. Heat Setting . 09 2.11. Dyeing . 09 2.12. Printing . 11 2.13. Finishing . 11 2.14. Quality Assurance Laboratory . 12 2.15. Effluent Treatment Plant . 12 3. Introduction to Wool . 13 3.1. What is Wool? . 13 3.2. Types of Wool . 13 4. Composition of Wool . 15 4.1. Chemical Structure of Wool . 15 4.2. Morphological Structure of Wool . 16 5. Properties of Wool . 18 5.1. Physical properties of wool . 18 5.2. Chemical Properties of Wool . 19 5.3. End-Use Properties of Wool . 20 5.3.1 Uses and Application of Wool Fibres . 21 5.3.2 End Uses of Wool Fibres . 21 6. Wool Manufacturing Process . 22 Course: Wool Fiber Dyeing Machine Operator Developed by: Textiles Committee, Ministry of Textiles, Govt. of India 6.1. Flow Chart of Wool Processing . 22 6.2. Wool Manufacturing Processes . 22 6.2.1. Shearing . 23 6.2.2. Grading and Sorting . 23 6.2.3. Cleaning and Scouring . 24 6.2.4. Carding . 24 6.2.5. -
ANTHRAQUINONE and ANTHRONE SERIES Part IX
ANTHRAQUINONE AND ANTHRONE SERIES Part IX. Chromatographic Adsorption of Aminoanthraquinones on Alumina BY N. R. RAo, K. H. SHAH AND K. VENKATARAMAN, F.A.Sc. (Department of Chemical Technology. University of Bombay, Bombay) Received November 10, 1951 CORRELATIONS between chemical constitution and chromatograpl~c behaviour can only be attempted in molecales of the same or similar types and under specified conditions of chromatographic treatment, since complex solvent- adsorbent, solute-solvent and solute-adsorbent relationships are involved. Changes in the sequence of adsorption of the constituents in a mixture have been observed, ooth when the adsorbent is changed and when the deve- loping solvent is changed. Thus Strain was able tc separate some ternary mixtures in four of the six pessible sequences by changing the solvent1; and LeRosen found that cryptoxanthin is aloove lycopene on alumina and on calcium carbonate columns, but the order is inverted on a column of calcium hydroxide, using benzene as developer with all the three adsoroents. 2 An inversion of the sequence of adsorption of N-ethyl-N, N'-diphenylurea and 4-nitro-N-ethylaniline was observed by Schroeder when a slight alteration in the composition of the developer (2 or 5~o of ethyl acetate in light petro- leum) was made. 3 LeRosen has defined the adsorption affinity R as the rate of movement of the adsorptive zone (mm./min.) divided by the rate of flow of developing solvent. 2 R values have been used for standardizing adsorbents and for determining the efficiency of developers; using the same adsorbent and solvent, R values provide a quantitative measure of the adsorption affinities of a series of compounds which can then be correlated with their chemical constitution. -
Thin-Layer (Planar) Chromatography 2619
III / DYES / Thin-Layer (Planar) Chromatography 2619 Thin-Layer (Planar) Chromatography P. E. Wall, Merck Limited, Poole, Dorset, UK that dyes are easily visualized on a chromatographic Copyright ^ 2000 Academic Press layer by their colour. Often slight differences in hue are more clearly seen on the layer than in solution and hence are easily distinguishable. It is therefore rarely Introduction necessary to employ detection reagents unless the area of interest is dye intermediates which may lack Synthetic dyes comprise a large group of organic, the conjugation needed in their molecular structure to organic salt and organometallic compounds which be coloured in visible light. Of course, there are number in the thousands. Most individual dyes are a large number of dyes which either exhibit Suores- assigned colour index (CI) numbers which helps to cence quenching in short wavelength ultraviolet (UV) identify structure and properties as well as identity light (254 nm) or naturally Suoresce by excitation in where a series of names have been used by the manu- long wavelength UV light (usually 366 nm). Where facturers for the same dye. Pigments are also listed separated dyes on the chromatographic layer do Su- and can be either organic or inorganic in nature. The oresce, the limit of sensitivity of detection is often in value of planar chromatography in the identiRcation the low nanogram or high picogram level. In the of dyes and separation of impurities and their quan- commercial environment, as dye quality can vary tiRcation is the main subject of this article. Synthetic from batch to batch and colour can be matched by dyes will be split into nine groups, the Rrst three being using different dyes, the planar chromatographic the major ones. -
Imports of Benzenoid Chemicals and Products
co p Z UNITED STATES TARIFF COMMISSION Washington IMPORTS OF BENZENOID CHEMICALS AND PRODUCTS 1 9 7 3 United States General Imports of Intermediates, Dyes, Medicinals, Flavor and Perfume Materials, and Other Finished Benzenoid Products Entered in 1973 Under Schedule 4, Part 1, of The Tariff Schedules of the United States TC Publication 688 United States Tariff Commission September 1 9 7 4 UNITED STATES TARIFF COMMISSION Catherine Bedell Chairman Joseph 0. Parker Vice Chairman Will E. Leonard, Jr. George M. Moore Italo H. Ablondi Kenneth R. Mason Secretary to the Commission Please address all communications to UNITED STATES TARIFF COMMISSION Washington, D.C. 20436 ERRATA SHEET Imports of Benzenoid Chemicals And'Produets, 1973 P. 94-- The 1973 data ascribed to Acrylonitrile-butadiene- styrene (ABS) resins actually included 8,216,040 pounds of Methyl- methacrylate-butadiene-styrene (MBS) resins. The revised figure for ABS resins alone is 23,823,791 pounds. CONTENTS (Imports under TSUS, Schedule 4, Parts 1B and 1C) Table No. Page 1. Benzenoid intermediates: Summary of U.S. general imports entered under Part 1B, TSUS, by competitive status, 1973___ 6 2. Benzenoid intermediates: U.S. general imports entered under Part 1B, TSUS, by country of origin, 1973 and 1972___ 6 3. Benzenoid intermediates: U.S. general imports entered under Part 1B, TSUS, showing competitive status,. 1973, 8 4. Finished benzenoid products: Summary of U.S. general im- ports entered under Part 1C, TSUS, by competitive status, 1973- 28 S. Finished benzenoid products: U.S. general imports entered under Part 1C, TSUS, by country of origin, 1973 and 1972--- 29 6. -
USE and ASSESSMENT of MARKER DYES USED with HERBICIDES
SERA TR 96-21-07-03b USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Prepared by: Michelle Pepling1, Phillip H. Howard1, Patrick R. Durkin2, 1Syracuse Research Corporation 6225 Running Ridge Road North Syracuse, New York 13212-2509 2Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., Building 42C Fayetteville, New York 13066-0950 Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 TABLE OF CONTENTS TABLE OF CONTENTS .....................................................ii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................. iii 1. INTRODUCTION .....................................................1 2. CURRENT PRACTICE .................................................2 3. GENERAL CONSIDERATIONS .........................................3 3.1. DEFINITIONS .................................................3 3.2. CLASSES OF DYES .............................................4 3.3. -
Dyes & Pigments
Dyes & Pigments with forecasts to 2005 and 2010 New study finds: • The US market for dyes and organic pigments (organic colorants) is expected to increase 2.8 percent per year to $3.1 billion in 2005, with volume over the same period forecast to reach 675 million pounds • Positive growth opportunities are to be found in the rapidly growing market for dyes used in digital printing inks and high-tech imaging • The six leading suppliers -- Ciba Specialty Chemicals, DyStar, Clariant, Sun Chemical, Bayer and BASF -- accounted for nearly two-thirds of the total market in 2000 Freedonia Industry Study #1439 Study Publication Date: June 2001 Price: $3,700 Dyes & Organic Pigments Pages: 237 Dyes & Organic Pigments, a new study from The Freedonia Group, provides you with an in-depth analysis of major trends in the industry and the outlook for product seg- ments and major markets -- critical information to help you with strategic planning. This brochure gives you an indication of the scope, depth and value of Freedonia's new study, Dyes & Organic Pigments. Ordering information is included on the back page of the brochure. Brochure Table of Contents Study Highlights ............................................................................... 2 Table of Contents and List of Tables and Charts ............................. 4 Sample Pages and Sample Tables from: Market Environment .................................................... 6 Products ....................................................................... 7 Markets....................................................................... -
Opinion on the SCCNFP on Disperse Violet 1 Impurified with Disperse Red
SCCNFP/0504/01, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING DISPERSE VIOLET 1 IMPURIFIED WITH DISPERSE RED 15 Colipa n° C64 & C61 adopted by the SCCNFP during the 19th Plenary meeting of 27 February 2002 SCCNFP/0504/01, final Evaluation and opinion on : Disperse Violet 1 impurified with Disperse Red 15 ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. 1.2 Request to the SCCNFP The SCCNFP is requested to answer the following questions : * Is Disperse Violet 1 impurified with Disperse Red 15 safe for use in cosmetic products? * Does the SCCNFP propose any restrictions or conditions for its use in cosmetic products? 1.3 Statement on the toxicological evaluation The SCCNFP is the scientific advisory body to the European Commission in matters of consumer protection with respect to cosmetics and non-food products intended for consumers. The Commission’s general policy regarding research on animals supports the development of alternative methods to replace or to reduce animal testing when possible. In this context, the SCCNFP has a specific working group on alternatives to animal testing which, in co-operation with other Commission services such as ECVAM (European Centre for Validation of Alternative Methods), evaluates these methods. The extent to which these validated methods are applicable to cosmetic products and its ingredients is a matter of the SCCNFP. -
95[.95]Functionalizable Glyconanoparticles for A
nanomaterials Communication Functionalizable Glyconanoparticles for a Versatile Redox Platform Marie Carrière 1,2, Paulo Henrique M. Buzzetti 1 , Karine Gorgy 1, Muhammad Mumtaz 2, Christophe Travelet 2 , Redouane Borsali 2,* and Serge Cosnier 1,* 1 UMR 5250, Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.C.); [email protected] (P.H.M.B.); [email protected] (K.G.) 2 CERMAV, UPR 5301, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.M.); [email protected] (C.T.) * Correspondence: [email protected] (R.B.); [email protected] (S.C.) Abstract: A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nano- precipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene- block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spher- ical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs. -
Structural Changes and Dynamic Behaviour of Vanadium Oxide‐Based Catalysts for Gas‐Phase Selective Oxidations
Alma Mater Studiorum ‐ Università di Bologna Facoltà di Chimica Industriale Dipartimento di Chimica Industriale e dei Materiali Structural changes and dynamic behaviour of vanadium oxide‐based catalysts for gas‐phase selective oxidations Tesi di Dottorato di Ricerca Presentata da: Relatore: Dott.ssa Silvia Luciani Prof. Fabrizio Cavani Co‐relatore: Dott. Nicola Ballarini Coordinatore: Chiar.mo Prof. Luigi Angiolini Dottorato di Ricerca in Chimica Industriale (settore CHIM/04) ciclo XXI Esame finale anno 2009 Index INDEX ABSTRACT 1 PART A 5 1 Introduction 7 1.1 Maleic Anhydride: production and uses 7 1.1.1 Maleic Anhydride uses 8 1.1.2 Maleic Anhydride production 9 1.2 Catalytic System 16 1.2.1 Synthesis of vanadyl pyrophosphate 16 1.2.2 P/V ratio 21 1.2.3 The role of the different V species 21 1.2.4 Supported systems 22 1.2.5 Recent developments to improve the catalytic system 25 1.3 Reaction scheme and mechanism 28 1.3.1 Reaction scheme 28 1.3.2 Reaction mechanism 30 1.3.3 Nature of active sites 31 1.4 References 34 2 Experimental 41 2.1 Catalysts synthesis 41 2.1.1 Synthesis of vanadyl pyrophosphate, (VO)2P2O7 41 2.1.2 Synthesis of supported catalysts 42 2.2 Samples characterization 42 2.3 Catalytic tests 43 2.3.1 Bench scale plant 43 2.3.2 Analytical system 45 2.3.3 Elaboration of catalytic data 46 I Index 3 Surface dynamic of V/P/O catalyst 47 3.1 Introduction 47 3.2 Experimental 48 3.3 Results and discussion 49 3.3.1 “In‐situ” calcination 49 3.3.2 Ex‐situ characterization 52 3.3.3 “In‐situ” Raman spectroscopy 55 3.3.4 Steady state -
Institute of Chemistry University of the Punjab, Lahore
SYNTHESIS OF ECO-FRIENDLY DYES A THESIS SUBMITTED TO THE UNIVERSITY OF THE PUNJAB FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY Session 2010 SUBMITTED BY: RANA AMJAD AYUB BHATTI RESEARCH SUPERVISOR PROF. DR. MUNAWAR ALI MUNAWAR INSTITUTE OF CHEMISTRY UNIVERSITY OF THE PUNJAB, LAHORE. DEDICATDEDICATEDEDEDED To My Loving Family Prof. Munawar Ali Munawar Prof. Robert M. Christie Mr. Shehzad ...H.HHHassanassanassan.. Pervaiz, The prayers and guidance of all helped and enabled me to accomplish this project. Declaration I hereby declare that the work described in this thesis was carried out by me under the supervision of Prof. Dr. Munawar Ali Munawar at the Institute of Chemistry, University of the Punjab, Lahore. I also hereby declare that the substance of this thesis has neither been submitted elsewhere for any other degree. I further declare that the thesis embodies the results of my own research work or advanced studies and that it has been composed by my self. Where appropriate, I have made acknowledgement of the work of others. Rana Amjad Ayub Bhatti APPROVAL CERTIFICATE I hereby certify that Mr Rana Amjad Ayub Bhatti s/o M. Ayub Bhatti has conducted research work under my supervision, has fulfilled the condition and is qualified to submit the thesis entitled “Synthesis of Eco-friendly Dyes” in application for the degree of Doctor of Philosophy. Dr. Munawar Ali Munawar (Supervisor) Professor of Organic Chemistry. Institute of Chemistry, University of The Punjab. Lahore, Pakistan. ACKNOWLEDGEMENT All praises to the Al-Mighty “Allah ” who provided us with knowledge, sight to observe and brain to think. -
Process for Preparation of Hydrogen Peroxide
Europaisches Patentamt J) European Patent Office ® Publication number: 0 286 610 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION Application number: 88850082.4 ® Int.CI.4: C 01 B 15/023 Date of filing: 09.03.88 Priority: 27.03.87 SE 8701293 @ Applicant: Eka Nobel Aktiebolag S-44501Surte (SE) Date of publication of application: 12.10.88 Bulletin 88/41 @ Inventor: Bengtsson, Erik Alvar Asbacken 45 Designated Contracting States: S-44500Surte (SE) AT BE DE FR GB IT SE Andersson, Ulf, Mikael Bangegatan 2B S-41504G6teborg (SE) @ Representative: Schold, Zaid c/o Nobel Industries Sweden AB Patent Department Box 11554 S-1 00 61 Stockholm (SE) @ Process for preparation of hydrogen peroxide. (57) A process for the production of hydrogen peroxide according to the anthraquinone process. According to the process certain alkyl substituted caprolactames are used as solvents, and particularly as solvents for anthrahydroquinones. The substituted caprolactames, which for example can be hexyl caprolactam and octyl caprolactam, give a very good solubility for anthrahydroquinones and also for anthraquinones. The compounds can be used as the sole solvent at the production of hydrogen peroxide or in combination with conventionally used solvents such CM as hydrocarbons. < O to CO 00 CM Q_ LLJ Bundesdruckerei Berlin 0 286 610 , Description A process for the production of hydrogen peroxide The present invention relates to the production of hydrogen peroxide according to the per se well known anthraquinone process. More particularly the invention relates to the production of hydrogen peroxide 5 according to the anthraquinone process using particular solvents which give very good solubility for anthrahydroquinones and also for anthraquinones. -
The Anthraquinone Process
COVER STORY: H₂O₂ BACKGROUND How H₂O₂ is produced: The anthraquinone process Healthy and durable: In The industrial production of hydrogen peroxide began in the town of Weißenstein in the Austrian state of the food industry, PET bottles are sterilized Carinthia. This is where the Österreichische Chemische Werke company operated the world’s first hydrogen with hydrogen peroxide peroxide factory using electrolysis. Today this production plant is part of Evonik. The Weißenstein process before being filled made it possible to produce hydrogen peroxide on an industrial scale for the first time. Today this plant uses the autoxidation process, as do almost all the other hydrogen peroxide factories in the world. This process was developed by Georg Pfleiderer and Hans-Joachim Riedl at IG Farben in Ludwigshafen between 1935 and 1945, and since then it has been continuously refined. The process is based on the cyclical reduction and oxidation of an alkylated anthraquinone. The first step, hydrogenation, takes place in a reactor full of a solution of the anthraquinone (the “working solution”). “In the reactor, in the presence of a palladium catalyst hydrogen combines with the reaction carrier, a quinone derivative, to form a hydroquinone,” explains Dr. Jürgen Glenneberg, Head of Process Engineering at the Active Oxygens Business Line. The catalyst is then completely filtered out of the working solution. In the second step, the oxidation stage, huge compressors pump air into a bubble reactor that is full of the working solution. When the hydroquinone in the organic phase comes into contact with the oxygen in the air, it oxidizes spontaneously back into quinone, forming hydrogen peroxide in the process.