2004 Commercial Space Transportation Year in Review Draft

Total Page:16

File Type:pdf, Size:1020Kb

2004 Commercial Space Transportation Year in Review Draft 2004 YEAR IN REVIEW INTRODUCTION INTRODUCTION The Commercial Space Transportation: 2004 Launch, LLC. The APStar 5 launch was con- Year in Review summarizes U.S. and interna- sidered a partial failure because the Zenit’s tional launch activities for calendar year 2004 upper stage shut down prematurely, placing and provides a historical look at the past five the satellite in a lower-than-intended orbit, years of commercial launch activities. but the spacecraft was able to reach its desti- nation in GEO using its onboard thrusters The Federal Aviation Administration’s without reducing its on-orbit lifetime. Office of Commercial Space Transportation (FAA/AST) licensed nine commercial orbital Overall, 15 commercial orbital launches launches and five suborbital launches in occurred worldwide in 2004, representing 28 2004. percent of the 54 total launches for the year. The 15 commercial launches represent a 12 Of the nine orbital licensed launches, six percent decrease from 2003. FAA/AST- were of U.S.-built vehicles. International licensed orbital launch activity accounted for Launch Services (ILS) launched three Atlas 60 percent of the worldwide commercial 2AS boosters, carrying the AMC 10, AMC launch market in 2004. Russia conducted five 11, and Superbird 6 communications satel- commercial launch campaigns, bringing its lites; these launches were the last commercial commercial launch market share to about 33 missions for the Atlas 2 family of vehicles, percent for the year. Arianespace conducted which ILS and Lockheed Martin retired in only a single commercial launch in 2004. 2004. ILS also launched the MBSAT 1 and AMC 16 communications satellites on an FAA/AST issued its first-ever suborbital Atlas 3A and an Atlas 5 521, respectively. reusable mission licenses in 2004 to Scaled Orbital Sciences Corporation launched Rocsat Composites and XCOR Aerospace. Scaled 2, a Taiwanese remote sensing satellite, on a Composites carried out five licensed launches Taurus XL. of its SpaceShipOne suborbital vehicle, including a June 21 flight that marked the Boeing Launch Services (BLS) per- first time a privately-developed manned vehi- formed three commercial launches, deploying cle flew into space, as well as flights on the Estrela do Sul 1, DirecTV 7S, and APStar September 29 and October 4 to win the $10- 5 communications spacecraft, each aboard a million Ansari X Prize. Ukrainian-built Zenit 3SL provided by Sea ABOUT THE OFFICE OFCOMMERCIAL SPACE TRANSPORTATION (AST) The Federal Aviation Administration’s safety, the safety of property, and the national Office of Commercial Space Transportation security and foreign policy interests of the (FAA/AST) licenses and regulates U.S. com- United States. Chapter 701 and the 2004 U.S. mercial space launch and reentry activity as Space Transportation Policy also direct the authorized by Executive Order 12465 Federal Aviation Administration to encourage, (Commercial Expendable Launch Vehicle facilitate, and promote commercial launches Activities) and 49 United States Code Subtitle and reentries. IX, Chapter 701 (formerly the Commercial Space Launch Act). AST’s mission is to Additional information concerning license and regulate commercial launch and commercial space transportation can be reentry operations to protect public health and found on AST’s web site at http://ast.faa.gov. PAGE 1 2004 YEAR IN REVIEW DEFINITIONS DEFINITIONS The following definitions apply to the INTERNATIONALLY COMPETED Commercial Space Transportation: 2004 Year in Review. An internationally competed launch contract is one in which the launch opportunity was COMMERCIAL SUBORBITAL OR ORBITAL available in principle to any capable launch LAUNCH service provider. Such a launch is considered commercial. A commercial suborbital or orbital launch has one or both of the following characteristics: ORBITS • The launch is licensed by FAA /AST. • A spacecraft in geostationary Earth orbit (GSO) is synchronized with the Earth's • The primary payload’s launch contract rotation, orbiting once every 24 hours, was internationally competed (see defini- and appears to an observer on the ground tion of internationally competed below). to be stationary in the sky. GEO is a A primary payload is generally defined broader category used for any circular as the payload with the greatest mass on orbit at an altitude of 35,852 kilometers a launch vehicle for a given launch. (22,277 miles) with a low inclination (i.e., over the equator). COMMERCIAL PAYLOAD • Non-geosynchronous orbit (NGSO) satel- A commercial payload is described as having lites are those in orbits other than GEO. one or both of the following characteristics: They are located in low Earth orbit (LEO, lowest achievable orbit to about 2,400 • The payload is operated by a private kilometers, or 1,491 miles), medium company. Earth orbit (MEO, 2,400 kilometers to GEO), and all other high or elliptical • The payload is funded by the govern- orbits or trajectories. ELI is used to ment, but provides satellite service par- describe a highly elliptical orbit (such as tially or totally through a private or those used for Russian Molniya satel- semi-private company. This distinction lites), and EXT is a designation used for is usually applied to certain telecommu- orbits beyond GEO (such as interplane- nication satellites whose transponders tary trajectories). are partially or totally leased to a variety of organizations, some or all of which generate revenues. Examples are Russia’s Express and Ekran series of spacecraft. All other payloads are classified as non- commercial (government-civil, government- military, or non-profit). PAGE 2 2004 YEAR IN REVIEW 2004 FAA-LICENSED ORBITAL LAUNCH SUMMARY 2004 FAA-LICENSED ORBITAL LAUNCH SUMMARY Six of the nine FAA/AST-licensed commer- Figure 1. FAA-Licensed Orbital Launch Events cial orbital launches for 2004 were conduct- ed from U.S. ranges, while three launches 12 were conducted from the Sea Launch Odyssey platform in the Pacific Ocean. Eight ss 10 orbital flights were successfully executed for 8 commercial customers, along with one partial 6 failure that did not result in the loss or 10 9 impairment of its payload. None of the 4 8 6 5 launches carried multiple payloads. The nine 2 FAA-licensed launches are listed in Table 1. Number of Orbital Launches 0 2000 2001 2002 2003 2004 The nine FAA-licensed launches includ- ed the following characteristics: • Eight launches were to GEO, and one to LEO. Figure 2. Estimated Revenues for FAA-Licensed Orbital Launch Events • Eight launches, worth approximately $560 million in revenue1, were conduct- ed for commercial clients. The remain- $700 ing launch of a Taurus XL was conduct- $600 ed for the National Space Program $500 Office (NSPO) of Taiwan, with an esti- $400 mated value of $25 million. $625 M $300 $585 M $US Millions $529 M FAA-licensed launches decreased in fre- $200 $337 M $413 M quency from 2000 to 2001, with a steady $100 annual increase evident since then (see $0 Figure 1). A similar trend was observed for 2000 2001 2002 2003 2004 estimated FAA-licensed commercial orbital launch revenues (see Figure 2). Table 1. 2004 FAA-Licensed Orbital Launch Events Launch Date Vehicle Payload Outcome Orbit Jan 10 Zenit 3SL Estrela do Sul 1 Success GEO Feb 5 Atlas 2AS AMC 10 Success GEO Mar 13 Atlas 3A MBSAT 1 Success GEO Apr 15 Atlas 2AS Superbird 6 Success GEO May 4 Zenit 3SL DirecTV 7S Success GEO May 19 Atlas 2AS AMC 11 Success GEO May 20 Taurus XL Rocsat 2 Success LEO Jun 28 Zenit 3SL APStar 5 Partial GEO Dec 17 Atlas 5 521 AMC 16 Success GEO 1 Revenues for both U.S. and foreign commercial launches are based on open source information and estimates by FAA/AST. They are approximations only. Actual revenue received for a single launch may be spread over several years. PAGE 3 2004 YEAR IN REVIEW U.S. AND FAA-LICENSED LAUNCH ACTIVITY IN DETAIL U.S. AND FAA-LICENSED ORBITAL LAUNCH ACTIVITY IN DETAIL The United States carried out a total of 16 two launches were successful, but the APStar launches, six of which were licensed by 5 launch was designated a partial failure FAA/AST. Sea Launch conducted three com- when the vehicle’s Block DM-SL upper stage mercial launches, also licensed by the FAA. shut down 54 seconds early, leaving the satel- See Table 2 for a detailed breakdown of U.S. lite in a lower transfer orbit than planned. launch activity (including Sea Launch) dur- APStar 5, which carried extra propellant for ing 2004 by vehicle. its onboard thrusters, was able to maneuver into its final GEO orbit without affecting its BOEING LAUNCH SERVICES (BLS) 13-year specified lifetime. An investigation later concluded that an electrical short in BLS only offers the Zenit 3SL for commer- cables within the upper stage created interfer- cial launches to GEO. Due to the downturn in ence that distorted data from a propellant commercial launch demand, Boeing elected flow sensor, causing the engine to consume to discontinue marketing the Delta 4 series of more propellant than planned. Corrective vehicles to potential commercial customers, measures have been implemented for future instead relying on the Zenit 3SL to address flights. the GEO market. BLS continues to offer the Delta 2 for commercial launches of NGSO Boeing, which markets the Zenit 3SL, is payloads. the majority shareholder (40 percent) of Sea Launch, LLC, whose partners include S. P. Sea Launch conducted three commercial Korolev Rocket and Space Corporation launches in 2004. The Zenit 3SL is launched Energia of Russia (25 percent), Kvaerner of from the mobile Odyssey Launch Platform Norway (20 percent), and SDO Yuzhnoye/PO along the equator on the Pacific Ocean. The Yuzhmash of Ukraine (15 percent). company launched Estrela do Sul 1 in January, DirecTV 7S in May, and APStar 5 (also known as Telstar 18) in June.
Recommended publications
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • What Is Gravity Probe B? a Quest for Experimental Truth the GP-B Flight
    What is Gravity Probe B? than Gravity Probe B. It’s just a star, a telescope, and a spinning sphere.” However, it took the exceptional collaboration of Stanford, Gravity Probe B (GP-B) is a NASA physics mission to experimentally MSFC, Lockheed Martin and a host of others more than four decades investigate Einstein’s 1916 general theory of relativity—his theory of gravity. to develop the ultra-precise gyroscopes and the other cutting- GP-B uses four spherical gyroscopes and a telescope, housed in a satellite edge technologies necessary to carry out this “simple” experiment. orbiting 642 km (400 mi) above the Earth, to measure, with unprecedented accuracy, two extraordinary effects predicted by the general theory of rela- The GP-B Flight Mission & Data Analysis tivity: 1) the geodetic effect—the amount by which the Earth warps the local spacetime in which it resides; and 2) the frame-dragging effect—the amount On April 20, 2004 at 9:57:24 AM PDT, a crowd of over 2,000 current and by which the rotating Earth drags its local spacetime around with it. GP-B former GP-B team members and supporters watched and cheered as the tests these two effects by precisely measuring the precession (displacement) GP-B spacecraft lifted off from Vandenberg Air Force Base. That emotionally angles of the spin axes of the four gyros over the course of a year and com- overwhelming day, culminating with the extraordinary live video of paring these experimental results with predictions from Einstein’s theory. the spacecraft separating from the second stage booster meant, as GP-B Program Manager Gaylord Green put it, “that 10,000 things went right.” A Quest for Experimental Truth Once in orbit, the spacecraft first underwent a four-month Initialization The idea of testing general relativity with orbiting gyroscopes was sug- and Orbit Checkout (IOC), in which all systems and instruments were gested independently by two physicists, George Pugh and Leonard Schiff, initialized, tested, and optimized for the data collection to follow.
    [Show full text]
  • SEER for Hardware's Cost Model for Future Orbital Concepts (“FAR OUT”)
    Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com SEER for Hardware’s Cost Model for Future Orbital Concepts (“FAR OUT”) Lee Fischman ISPA/SCEA Industry Hills 2008 Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Introduction A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL. Far Out has been integrated into SEER for Hardware. This presentation discusses the Far Out project and resulting model. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Goals • Estimate space satellites in any earth orbit. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3. • Estimate concepts to be launched 10-20 years into the future. • Cost missions ranging from exploratory to strategic, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range. • Estimates will include hardware, software, systems engineering, and production. • Handle either government or commercial missions, either “one-of-a-kind” or constellations. • Be used in a “top-down” manner using relatively less specific mission resumes, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Challenge: Technology Change Over Time Evolution in bus technologies Evolution in payload technologies and performance 1.
    [Show full text]
  • SIGINT: the Mission Cubesats Are Made for a Small Country’S Perspective
    Naval Research Laboratory 22 June 1960 SIGINT: The Mission CubeSats are Made For A Small Country’s Perspective 32nd Annual AIAA/USU Conference on Small Satellites 1 ISIS - Innovative Solutions In Space Vertically Integrated Small Satellite Company SATELLITE CUBESAT LAUNCH SERVICES R&D SERVICES SOLUTIONS PRODUCTS 2 SIGINT – ELINT – Spectrum Monitoring SIGINT SpectrumCOMINT Monitoring ELINT FISINT/TELINT TECHNICAL OPERATIONAL • Discover new systems • Location • Details about emissions • Schedule • Performance estimation • Movement • ECM development • Warning 3 Spectrum Monitoring Causes of Interference Source: Eutelsat briefing to the ITU (2013) 4 Miniturization 5 ELINT: Single-Satellite Solution Lotos-S/Pion-NKS 8 - 12 m Images courtesy of RussianSpaceWeb 6 ELINT: Direction Finding Direction of Arrival/Angle of Arrival 7 Fundamental Limits Why the Shrink-Ray Won’t Work Size has effect on direction finding accuracy because of: • Antenna gain (i.e. SNR) • Number of array elements that can be placed • Array element spacing A 6U-face of CubeSat offers very limited real estate Images courtesy of NASA 8 BRIK-II Royal Netherlannds Air Force 9 ELINT: Multi-Satellite Solution Naval Ocean Surveillance System Picture by John C. Murphy 10 Capacité de Renseignement Electromagnétique Spatiale (CERES) 781 M€ Essaim 216 M€ 2004 Elisa 115 M€ 2007 2009 2011 CERES 450 M€ 2013 2015 2020 Images courtesy of CNES 11 Miniturization through Distribution Opening Up The Trade Space Number of satellites in orbit Image courtesy of the Science and Technology Policy Institute 12 Radio Astronomy An Intransparent Affair 13 Orbiting Low Frequency Antennas for Radio Astronomy < 100 km > 50 satellites = 0.006° (30 MHz) 14 Maturing CubeSats for ELINT/Spectrum Monitoring & Astronomy Development Areas Station-Keeping ISL & Synchronization 2-100 Satellites Relative Position Knowledge From A.
    [Show full text]
  • Space in Central and Eastern Europe
    EU 4+ SPACE IN CENTRAL AND EASTERN EUROPE OPPORTUNITIES AND CHALLENGES FOR THE EUROPEAN SPACE ENDEAVOUR Report 5, September 2007 Charlotte Mathieu, ESPI European Space Policy Institute Report 5, September 2007 1 Short Title: ESPI Report 5, September 2007 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6 Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: ESPI, September 2007 This report was funded, in part, through a contract with the EUROPEAN SPACE AGENCY (ESA). Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “source: ESPI Report 5, September 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Compilation, Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 5, September 2007 2 EU 4+ Executive Summary ....................................................................................... 5 Introduction…………………………………………………………………………………………7 Part I - The New EU Member States Introduction................................................................................................... 9 1. What is really at stake for Europe? ....................................................... 10 1.1. The European space community could benefit from a further cooperation with the ECS ................................................................. 10 1.2. However, their economic weight remains small in the European landscape and they still suffer from organisatorial and funding issues .... 11 1.2.1. Economic weight of the ECS in Europe ........................................... 11 1.2.2. Reality of their impact on competition ............................................ 11 1.2.3. Foreign policy issues ................................................................... 12 1.2.4. Internal challenges ..................................................................... 12 1.3.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Space Debris
    IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low
    [Show full text]
  • NANOSAT 1B COMUNICACIONES Orbita NANOSAT 1B
    COMMUNICATIONS NANOSAT 1B COMUNICACIONES Orbita NANOSAT 1B Tipo: Polar heliosíncrona Keflavik Altura: 660 km. ANTARCTICA Inclinación: 98º INTA Madrid El Arenosillo ANTARTIDA Izaña Pune NANOSAT 1B NANOTECNOLOGIA Buenos Aires NANOTECHNOLOGY Usuhaia Marambio Belgrano una nueva filosofía de diseño Estaciones INTA INTA stations Estación Antártica Belgrano Belgrano Antarctic Station para sistemas espaciales Comunicaciones con la Antártida Communications with Antarctica Gracias a su órbita polar el NANOSAT 1B viene a sustituir a su ante- Thanks to his polar orbit, the NANOSAT 1B will replace his predecessor, cesor, el NANOSAT 01, para enlazar el INTA en Madrid con estaciones the NANOSAT 01, in order to link INTA-Madrid with scientific stations in científicas en lugares remotos como las situadas en la Antártida. remote places as the ones in the Antarctica. Los satélites geoestacionarios de comunicaciones no cubren esas (The geostationary communications satellites do not cover extreme latitudes extremas. latitudes.) A new philosophy for space systems design www.inta.es www.inta.es COMMUNICATIONS Carga útil de NANOSAT 1B NANOSAT 1B Payload NANOSAT 1B es un nanosatélite, pesa menos de 20 kg y mide COMUNICACIONES menos de medio metro de lado. Tiene forma hexagonal y va cu- LDT, Las Dos Torres bierto de paneles solares igual que su antecesor el NANOSAT Desarrollado totalmente por el INTA, es un detector de proto- 01 al que toma el relevo al acabar su vida útil. nes de alta energía que servirá para caracterizar el ambiente ANTARCTICA espacial en este rango de radiación. ANTARTIDA Incorpora como novedad en su carga útil: NANOSAT 1B it is a nanosatellite that weights about 20 kg and LDT, The Two Towers Totally developed by INTA, is a high energy protons detector which will measures less than half a meter side.
    [Show full text]
  • Space Policies, Issues and Trends in 2010/2011
    Space Policies, Issues and Trends in 2010/2011 Report 35 June 2011 Spyros Pagkratis Short title: ESPI Report 35 ISSN: 2076-6688 Published in June 2011 Price: €11 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 35; June 2011. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 35 2 June 2011 Space Policies, Issues and Trends in 2010/2011 Table of Contents 1. Global Political and Economic Trends 5 1.1 Global Economic Outlook 5 1.2 Political Developments 6 1.2.1 Security 6 1.2.2 Environment 7 1.2.3 Energy 7 1.2.4 Resources 8 1.2.5 Knowledge 8 1.2.6 Mobility 11 2. Global Space Sector Size and Developments 12 2.1 Global Space Budgets and Revenues 12 2.2 Overview of Institutional Space Budgets 12 2.3 Overview of Commercial Space Markets 16 2.3.1 Satellite Services 16 2.3.2 Satellite Manufacturing 19 2.3.3 Launch Sector 19 2.3.4.
    [Show full text]
  • Mission Model (Aggregate)
    Mission Models (Graphical Depiction) IOAG-14, Nov. 2-4, 2010 Update/s after IOAG-14 Meeting: (1) IOAG Secretariat / 2011-Jan.-14: Incorporated 2010-12-15 ESA update Earth Missions (1) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 COSMO –SM1 COSMO –SM2 ASI COSMO –SM3 COSMO –SM4 AGI MIOSAT PRISMA SPOT HELIOS 2010 TELECOM-2 Legend Green – In operation JASON Light green – Potential extension Blue – In development DEMETER TARANIS Light Blue – Potential extension Yellow – Proposed ESSAIM MICROSCOPE Light Yellow – Proposed extension CNES PARASOL MERLIN Note: Color fade to white indicates End Date unknown CALIPSO COROT CERES SMOS CSO-MUSIS (terminate 2028, potentially extend to 2030) PICARD MICROCARB (*) No dates provided Earth Missions (2) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 BIR DEOS Legend Green – In operation GR1/ GR2 ENMAP Light green – Potential extension Blue – In development SB1/SB2 Light Blue – Potential extension Yellow – Proposed DLR TerraSAR-X H2SAT* Light Yellow – Proposed extension TET Asteroiden Finder* Note: Color fade to white indicates End Date unknown TanDEM-X PRISMA 2010 (*) No dates provided Earth Missions (3) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 ERS 2 ADM-AEOLUS ENVISAT Sentinel 1B Extends to Oct. 2026 CRYOSAT 2 Sentinel 2B Extends to Jun. 2027 GOCE Earth Case Swarm Sentinel 1A Sentinel 2A Sentinel 3A ESA 2010 Sentinel 3B Extends to Aug. 2027 MSG MSG METOP METOP ARTEMIS GALILEO Legend Green – In operation
    [Show full text]
  • NIDS China Security Report 2021 China’S Military Strategy in the New Era
    ISBN: 978-4-86482-088-2 NIDS CHINA SECURITY REPORT NIDS China Security Report 2021 China’s Military Strategy in the New Era National Institute for Defense Studies, Japan National Institute for Defense Studies, Japan NIDS China Security Report 2021 China’s Military Strategy in the New Era Published by The National Institute for Defense Studies 5-1 Honmura-cho, Ichigaya, Shinjuku-ku, Tokyo 162-8808 Japan Website: http://www.nids.mod.go.jp Translated by INTERBOOKS Copyright © 2020 by the National Institute for Defense Studies, Japan All rights reserved. No part of this publication may be reproduced in any form without written, prior permission from the publisher. The China Security Report 2021 comprises NIDS researchers’ analyses and descriptions based on information compiled from open sources in Japan and overseas. The statements contained herein do not necessarily represent the official position of the Government of Japan or the Ministry of Defense. This publication is a translation of the Japanese version originally published in November 2020. ISBN978-4-86482-088-2 Printed in Japan NIDS China Security Report 2021 Contents Preface iii Summary v Acronyms and Abbreviations viii Introduction 2 Chapter 1: China’s Preparations for Informatized Warfare 1. Changes in China’s Military Strategy 6 (1) The Era of Mao Zedong (1927–1976): The Curse of the Final War and Active Defense 6 (2) The Era of Deng Xiaoping (1976–1989): A Break from the Final War and a Shift to Local War 7 (3) The Era of Jiang Zemin (1989–2004): Local Wars under High-Tech Conditions 9 (4) The Era of Hu Jintao (2004–2012): Informatized Local Wars 10 2.
    [Show full text]