Space Security Index 2013

Total Page:16

File Type:pdf, Size:1020Kb

Space Security Index 2013 SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space. Indicator 1.1: Orbital debris Indicator 1.2: Radio frequency (RF) spectrum and orbital positions Indicator 1.3: Near-Earth Objects Indicator 1.4: Space weather Indicator 1.5: Space Situational Awareness PAGE 41 Theme 2: Access to and use of space by various actors: This theme examines the way in which space activity is conducted by a range of actors—governmental and nongovernmental—from the civil, commercial, and military sectors. It includes civil organizations engaged in the exploration of space or scientific research related to space, as well as builders and users of space hardware and space systems that aim to advance terrestrial-based military operations. Indicator 2.1: Space-based global utilities Indicator 2.2: Priorities and funding levels in civil space programs Indicator 2.3: International cooperation in space activities Indicator 2.4: Growth in commercial space industry Indicator 2.5: Public-private collaboration on space activities Indicator 2.6: Space-based military systems Space Security Index 2013 PAGE 76 Theme 3: Security of space systems: This theme examines the research, development, testing, and deployment of capabilities that could be used to interfere with space systems and to protect them from potential negation efforts. Indicator 3.1: Vulnerability of satellite communications, broadcast links, and ground stations Indicator 3.2: Protection of satellites against direct attacks Indicator 3.3: Capacity to rebuild space systems and integrate smaller satellites into space operations Indicator 3.4: Earth-based capabilities to attack satellites Indicator 3.5: Space-based negation-enabling capabilities PAGE 89 Theme 4: Outer space policies and governance: This theme examines national and international laws and regulations relevant to space security, in addition to the multilateral processes and institutions under which space security discussions take place. Indicator 4.1: National space policies and laws Indicator 4.2: Multilateral forums for space governance Indicator 4.3: Other initiatives PAGE 103 A Global Assessment of Space Security C. Jolly PAGE 111 Annex 1: Space Security Working Group Expert Participation PAGE 113 Annex 2: Types of Earth Orbits PAGE 114 Annex 3: Revised Draft International Code of Conduct for Outer Space Activities PAGE 120 Annex 4: Spacecraft Launched in 2012 PAGE 124 Endnotes Acronyms and Abbreviations ADR Active Debris Removal ACRONYMS AND ABBREVIAT AEHF Advanced Extremely High Frequency system (U.S.) AEOS Advanced Electro-Optical System ALASA Airborne Launch Assist Space Access (U.S.) ALTB Airborne Laser Test Bed ASAT Anti-Satellite Weapon ASEAN Association of Southeast Asian Nations ASI Agenzia Spaziale Italiana ATV Automated Transfer Vehicle CALT China Academy of Launch Vehicle Technology CAST China Academy of Space Technology CCL Commerce Control List (U.S.) CCP Commercial Crew Program CD Conference on Disarmament CFE Commercial and Foreign Entities CNES Centre national d’études spatiales (France) CNSA China National Space Administration COMSAT Communications Satellite Corporation COPUOS Committee on the Peaceful Uses of Outer Space (UN) COTS Commercial Orbital Transportation Services (U.S.) CRS Commercial Resupply Service CSA Canadian Space Agency CSpO Combined Space Operations DARPA Defense Advanced Research Projects Agency (U.S.) DLR German Aerospace Center DoD Department of Defense (U.S.) EDDE ElectroDynamic Debris Eliminator EELV Evolved Expendable Launch Vehicle (U.S.) EKV Exoatmospheric Kill Vehicle EMP Electromagnetic pulse (or HEMP for High Altitude EMP) EO Earth Observation ESA European Space Agency I ESOC European Space Operations Centre ONS ESTEC European Space Research and Technology Centre EU European Union EUMETSAT European Organisation for the Exploitation of Meteorological Satellites FAA Federal Aviation Administration (U.S.) FCC Federal Communications Commission (U.S.) FMCT Fissile Material Cut-off Treaty FSS Fixed Service Satellite GEO Geostationary Earth Orbit GEOSS Global Earth Observation System of Systems GGE Group of Governmental Experts (UN) 1 Space Security Index 2013 GLONASS Global Navigation Satellite System (Russia) GMES Global Monitoring for Environment and Security (Europe) GPS Global Positioning System (U.S.) GRAIL Gravity Recovery and Interior Laboratory GTO Geosynchronous Transfer Orbit HAND High Altitude Nuclear Detonation HELLADS High Energy Liquid Laser Area Defense System HEO Highly Elliptical Orbit HF High frequency HIGPS High-integrity GPS HTV Hypersonic Test Vehicle IADC Inter-Agency Space Debris Coordination Committee ICBM Intercontinental Ballistic Missile Inmarsat International Maritime Satellite Organisation Intelsat International Telecommunications Satellite Organization IRNSS Indian Regional Navigation Satellite System ISON International Scientific Optical Network ISRO Indian Space Research Organisation ISS International Space Station ITAR International Traffic in Arms Regulations (U.S.) ITU International Telecommunication Union JAXA Japan Aerospace Exploration Agency JEM Japanese Experimental Module JHPSSL Joint High-Power Solid-State Laser (U.S.) JSpOC Joint Space Operations Center (U.S.) J-SSOD JEM Small Satellite Orbital Deployer LEO Low Earth Orbit LTSSA Long-term Sustainability of Outer Space Activities MARS Mid-Atlantic Regional Spaceport MEO Medium Earth Orbit MiDSTEP Microsatellite Demonstration Science and Technology Experiment Program (U.S.) MIRACL Mid-Infrared Advanced Chemical Laser (U.S.) MiTEx Micro-satellite Technology Experiment (U.S.) NASA National Aeronautics and Space Administration (U.S.) NDAA National Defense Authorization Act (U.S.) NEA Near Earth Asteroid NEC Near Earth Comet NEO Near-Earth Object NEOWISE NEO Wide-field Infrared Survey Explorer NFIRE Near-Field Infrared Experiment (U.S.) NOAA National Oceanic and Atmospheric Administration (U.S.) NPO Science and Production Association (Russia) NRL Naval Research Laboratory (U.S.) NROL National Reconnaissance Office Launch (U.S.) NSAU National Space Agency of Ukraine 2 Acronyms and Abbreviations NTIA National Telecommunications and Information Administration (U.S.) ODWG Orbital Debris Working Group (U.S.) OECD Organisation for Economic Co-operation and Development OOS On-orbit satellite servicing ORF Observer Research Foundation (India) ORS Operationally Responsive Space (U.S.) OST Outer Space Treaty PAROS Prevention of an Arms Race in Outer Space PHA Potentially Hazardous Asteroid PHO Potentially Hazardous Object PMD Post-mission disposal PPWT Treaty on the Prevention of the Placement of Weapons in Outer Space, and of the Threat or Use of Force against Outer Space Objects QZSS Quazi-Zenith Satellite System (Japan) RAM Robotic Refueling Mission RBSP Radiation belt storm probe RF Radio Frequency RFI Radio Frequency Interference Roscosmos Russian Federal Space Agency RPO Rendezvous and proximity SANSA South African National Space Agency SDA Space Data Association SIA Satellite Industry Association SLV Small Launch Vehicle SSA Space Situational Awareness SSN Space Surveillance Network (U.S.) SST Space surveillance and tracking (ESA) SWORDS Soldier-Warfighter Operationally Responsive Deployer for Space (U.S.) SWPC Space Weather Prediction Center UARS Upper Atmosphere Research Satellite UNGA United Nations General Assembly UNIDIR United Nations Institute for Disarmament Research UNODA United Nations Office of Disarmament Affairs UNOOSA United Nations Office for Outer Space Affairs UN-SPIDER United Nations Platform
Recommended publications
  • The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
    THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668.
    [Show full text]
  • The Tubesat Launch Vehicle
    TubeSat and NEPTUNE 30 Orbital Rocket Programs Personal Satellites Are GO! Interorbital Systems www.interorbital.com About Interorbital Corporation Founded in 1996 by Randa and Roderick Milliron, incorporated in 2001 Located at the Mojave Spaceport in Mojave, California 98.5% owned by R. and R. Milliron 1.5% owned by Eric Gullichsen Initial Starting Technology Pressure-fed liquid rocket engines Initial Mission Low-cost orbital and interplanetary launch vehicle development Facilities 6,000 square-foot research and development facility Two rocket engine test sites at the Mojave Spaceport Expert engineering and manufacturing team Interorbital Systems www.interorbital.com Core Technical Team Roderick Milliron: Chief Designer Lutz Kayser: Primary Technical Consultant Eric Gullichsen: Guidance and Control Gerard Auvray: Telecommunications Engineer Donald P. Bennett: Mechanical Engineer David Silsbee: Electronics Engineer Joel Kegel: Manufacturing/Engineering Tech Jacqueline Wein: Manufacturing/Engineering Tech Reinhold Ziegler: Space-Based Power Systems E. Mark Shusterman,M.D. Medical Life Support Randa Milliron: High-Temperature Composites Interorbital Systems www.interorbital.com Key Hardware Built In-House Propellant Tanks: Combining state-of-the-art composite technology with off-the-shelf aluminum liners Advanced Guidance Hardware and Software Ablative Rocket Engines and Components GPRE 0.5KNFA Rocket Engine Test Manned Space Flight Training Systems Rocket Injectors, Valves Systems, and Other Metal components Interorbital Systems www.interorbital.com Project History Pressure-Fed Rocket Engines GPRE 2.5KLMA Liquid Oxygen/Methanol Engine: Thrust = 2,500 lbs. GPRE 0.5KNFA WFNA/Furfuryl Alcohol (hypergolic): Thrust = 500 lbs. GPRE 0.5KNHXA WFNA/Turpentine (hypergolic): Thrust = 500 lbs. GPRE 3.0KNFA WFNA/Furfuryl Alcohol (hypergolic): Thrust = 3,000 lbs.
    [Show full text]
  • Ariane-DP GB VA209 ASTRA 2F & GSAT-10.Indd
    A DUAL LAUNCH FOR DIRECT BROADCAST AND COMMUNICATIONS SERVICES Arianespace will orbit two satellites on its fifth Ariane 5 launch of the year: ASTRA 2F, which mainly provides direct-to-home (DTH) broadcast services for the Luxembourg-based operator SES, and the GSAT-10 communications satellite for the Indian Space Research Organization, ISRO. The choice of Arianespace by the world’s leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads and handling a complete range of missions, from launches of commercial satellites into geostationary orbit, to dedicated launches into special orbits. Arianespace and SES have developed an exceptional relationship of mutual trust over more than 20 years. ASTRA 2F will be the 36th satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to use an Ariane launcher. SES operates the leading direct-to-home (DTH) TV broadcast system in Europe, based on its Astra satellites, serving more than 135 million households via DTH and cable networks. Built by Astrium using a Eurostar E3000 platform, ASTRA 2F will weigh 6,000 kg at launch. Fitted with active Ku- and Ka-band transponders, ASTRA 2F will be positioned at 28.2 degrees East. It will deliver new-generation DTH TV broadcast services to Europe, the Middle East and Africa, and offers a design life of about 15 years.
    [Show full text]
  • May 14, 2010 Vol
    May 14, 2010 Vol. 50, No. 10 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe www.nasa.gov/centers/kennedy/news/snews/spnews_toc.html INSIDE . STS-132 payload has international flair Explorer School By Linda Herridge Symposium Spaceport News oeing’s STS-132 payload flow man- Bager, Eve Stavros, and NASA Mission Man- ager Robert Ashley, will be stationed on console in Fir- ing Room 2 of Kennedy’s Launch Control Center, Page 2 watching with anticipation as space shuttle Atlantis STS-130 crew soars into the sky from returns Launch Pad 39A. Stavros and Boeing’s Checkout Assembly and NASA/Gianni Woods Payload Processing Ser- Technicians prepare to lift the Russian-built Mini Research Module-1, or MRM-1, out of its transportation container in Kennedy’s vices, or CAPPS, team were Space Station Processing Facility for its move to the payload canister and transportation to Launch Pad 39A. instrumental in helping to prepare the Russian-built Processing Facility, about environmental testing at Stavros drew on previ- Mini Research Module-1, or five weeks before the sched- the launch pad. Boeing also ous international experi- MRM-1, and an Integrated uled launch, for transfer coordinated delivery and ence from her work on life Cargo Carrier for delivery to the launch pad and final setup of ground support sciences payloads for the orbiter integration activi- equipment at the launch pad European Space Agency in Page 3 to the International Space Station. ties,” Ashley said. “The for testing operations and the Netherlands. NASA alums According to Stavros, processing team met or beat served as the main inter- “Working with RSC lay foundation planning and coordination every schedule milestone face with the shuttle team Energia was an exercise in to process the two major despite the relatively small to ensure payload schedule payloads began more than a size of the NASA and Boe- compatibility.
    [Show full text]
  • Federal Register/Vol. 85, No. 103/Thursday, May 28, 2020
    32256 Federal Register / Vol. 85, No. 103 / Thursday, May 28, 2020 / Proposed Rules FEDERAL COMMUNICATIONS closes-headquarters-open-window-and- presentation of data or arguments COMMISSION changes-hand-delivery-policy. already reflected in the presenter’s 7. During the time the Commission’s written comments, memoranda, or other 47 CFR Part 1 building is closed to the general public filings in the proceeding, the presenter [MD Docket Nos. 19–105; MD Docket Nos. and until further notice, if more than may provide citations to such data or 20–105; FCC 20–64; FRS 16780] one docket or rulemaking number arguments in his or her prior comments, appears in the caption of a proceeding, memoranda, or other filings (specifying Assessment and Collection of paper filers need not submit two the relevant page and/or paragraph Regulatory Fees for Fiscal Year 2020. additional copies for each additional numbers where such data or arguments docket or rulemaking number; an can be found) in lieu of summarizing AGENCY: Federal Communications original and one copy are sufficient. them in the memorandum. Documents Commission. For detailed instructions for shown or given to Commission staff ACTION: Notice of proposed rulemaking. submitting comments and additional during ex parte meetings are deemed to be written ex parte presentations and SUMMARY: In this document, the Federal information on the rulemaking process, must be filed consistent with section Communications Commission see the SUPPLEMENTARY INFORMATION 1.1206(b) of the Commission’s rules. In (Commission) seeks comment on several section of this document. proceedings governed by section 1.49(f) proposals that will impact FY 2020 FOR FURTHER INFORMATION CONTACT: of the Commission’s rules or for which regulatory fees.
    [Show full text]
  • SES Global Reach YE2019
    THE GROWTH OF SES REACH IN AFRICA PRESENTED BY PRESENTED ON Clint Brown June 2020 SES Proprietary and Confidential | SES reach in Africa per orbital position 30.0 32.6 34.9 35 34.9M YE19 vs. 32.6M YE18 30 Changes vs. YE18: 13.7 • Updated Ghana and Nigeria (last done YE17) 14.2 25 • Growth in “Canal+ Afrique” (+0.8M) 13.0 Opportunities identified: 20 • Ongoing digital switch-over in many countries, Terrestrial e.g. Ghana, Ivory Coast, Nigeria, etc. Satellite 15 • Uptake in TV penetration across the region, e.g. In million homes Ethiopia, Kenya, Tanzania, Uganda 10 21.2 • HD TV set growth: homes purchasing a TV set 18.3 16.9 for the first time will have it with HD / UHD 5 0 YE17 YE18 YE19 Source: Satellite Monitors YE2019 SES Proprietary and Confidential | June '20 – SES Reach for Africa YE2019 2 SES reach in Africa per orbital position 22.0ºW 4.8ºE / 5.0ºE 28.2ºE 57.0ºE* SES-4 ASTRA-4A / SES-5 ASTRA-2F / -2G NSS-12 Total 6.2M 17.7M 11.6M 0.9M Satellite 6.2M 5.0M 10.5M 0.9M Key DTH platforms * Figures from YE2017 Source: Satellite Monitors YE2019 SES Proprietary and Confidential | June '20 – SES Reach for Africa YE2019 3 Overview of ASTRA-2F / ASTRA-2G | 28.2ºE 22.0ºW 4.8E / 5.0E 28.2°E 57.0°E SES-4 ASTRA-4A / SES-5 ASTRA-2F / 2G NSS-12 Footprints Key Markets & Customers Positioning 11.6M TV homes 171 TV channels ▲ Fastest growing DTH position for Anglophone West & Central African DTH HD 1 TV channel Key benefits ▲ Proven highest technical reach in West Africa, ASTRA-2F West Africa Ku-band beam giving broadcasters access to millions of
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • June, 2013 Mayumi Matsuura JAXA Flight Director Space Vehicle Technology Center Japan Aerospace Exploration Agency (JAXA) Congratulations on 50Th Anniversary
    June, 2013 Mayumi Matsuura JAXA Flight Director Space Vehicle Technology Center Japan Aerospace Exploration Agency (JAXA) Congratulations on 50th Anniversary 1963.6.16 2008.3.11 The fist part of Japanese Experiment Module was launched International Space Station 1984: US President Ronald Reagan proposed developing a permanently-occupied space station 1988: Governments of Canada, ESA member countries, US and Japan signed the Intergovernmental Agreement on a cooperative framework for the space station 1993: Russia joined the program 1998: Beginning of on-orbit station assembly 2000: Beginning of continuous stay of the astronauts 2008: Beginning of assembly of Japanese Experiment Module 2011: Completion of station assembly Present: In the utilization phase International Partners ISS is truly an International space collaboration effort, with the participation of many countries. (C) NASA The First Piece of ISS ISS assembly sequence started in 1998 with the Russian module, Zarya (sunrise), launched by a Russian Proton rocket vehicle. Nov. 20, 1998 Zarya provides battery power, fuel storage and rendezvous and docking capability for Soyuz and Progress space vehicles. (C) NASA ISS Under Construction...(1998-2011) Dec. 2000 Dec. 1998 Dec. 1998 Dec. 2006 (C) NASA ISS Assembly Completion July 2011, Space shuttle Atlantis, on its final spaceflight of the Space Shuttle Program, carried the Raffaello multipurpose logistics module. 2011.7@STS-135 (C) NASA Japanese Experimental Module (JEM) - Kibo Experiment Logistic Module - Pressurized Section (2008.Mar) ・ 8 racks can be installed Pressurized Module (2008. Jun) ・ Cargo storage area ・ The largest pressurized module on ISS ・ 10 payload racks can be installed ・ Various resources provided Remote Manipulator System (power, communication, thermal control, gas supply and exhaust) (2008.
    [Show full text]
  • International Space Exploration Coordination Group (ISECG) Provides an Overview of ISECG Activities, Products and Accomplishments in the Past Year
    Annual Report 2012 of the International Space Exploration Coordination Group INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP ISECG Secretariat Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands +31 (0) 71 565 3325 [email protected] ISECG publications can be found on: http://www.globalspaceexploration.org/ 2 Table of Contents 1. Introduction 4 2. Executive Summary 4 3. Background 5 4. Activities 4.1. Overview 7 4.2. Activities on ISECG Level 7 4.3. Working Group Activities 8 4.3.1. Exploration Roadmap Working Group (ERWG) 8 4.3.2. International Architecture Working Group (IAWG) 9 4.3.3. International Objectives Working Group (IOWG) 10 4.3.4. Strategic Communications Working Group (SCWG) 10 Annex: Space Exploration Highlights of ISECG Member Agencies 12 1. Agenzia Spaziale Italiana (ASI), Italy 13 2. Centre National d’Etudes Spatiales (CNES), France 15 3. Canadian Space Agency (CSA), Canada 17 4. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany 21 5. European Space Agency (ESA) 23 6. Japan Aerospace Exploration Agency (JAXA), Japan 28 7. Korea Aerospace Research Institute (KARI), Republic of Korea 30 8. National Aeronautics and Space Administration (NASA), USA 31 9. State Space Agency of Ukraine (SSAU), Ukraine 33 10. UK Space Agency (UKSA), United Kingdom 35 3 1 Introduction The 2012 Annual Report of the International Space Exploration Coordination Group (ISECG) provides an overview of ISECG activities, products and accomplishments in the past year. In the annex many of the ISECG participating agencies report on national space exploration highlights in 2012. 2 Executive Summary ISECG was established in response to the “The Global Exploration Strategy: The Framework for Coordination” (GES) developed by 14 space agencies1 and released in May 2007.
    [Show full text]
  • Britain Back in Space
    Spaceflight A British Interplanetary Society Publication Britain back in Space Vol 58 No 1 January 2016 £4.50 www.bis-space.com 1.indd 1 11/26/2015 8:30:59 AM 2.indd 2 11/26/2015 8:31:14 AM CONTENTS Editor: Published by the British Interplanetary Society David Baker, PhD, BSc, FBIS, FRHS Sub-editor: Volume 58 No. 1 January 2016 Ann Page 4-5 Peake on countdown – to the ISS and beyond Production Assistant: As British astronaut Tim Peake gets ready for his ride into space, Ben Jones Spaceflight reviews the build-up to this mission and examines the Spaceflight Promotion: possibilities that may unfold as a result of European contributions to Suszann Parry NASA’s Orion programme. Spaceflight Arthur C. Clarke House, 6-9 Ready to go! 27/29 South Lambeth Road, London, SW8 1SZ, England. What happens when Tim Peake arrives at the International Space Tel: +44 (0)20 7735 3160 Station, where can I watch it, listen to it, follow it, and what are the Fax: +44 (0)20 7582 7167 broadcasters doing about special programming? We provide the Email: [email protected] directory to a media frenzy! www.bis-space.com 16-17 BIS Technical Projects ADVERTISING Tel: +44 (0)1424 883401 Robin Brand has been busy gathering the latest information about Email: [email protected] studies, research projects and practical experiments now underway at DISTRIBUTION the BIS, the first in a periodic series of roundups. Spaceflight may be received worldwide by mail through membership of the British 18 Icarus Progress Report Interplanetary Society.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]