La Derriksite, CU4(U02) (Se03)2 (OH)6' H20, Une Nouvelle Espèce Minérale Par FABIEN CESBRON, Laboratoire De Minéralogie-Cristallographie, Associé Au C

Total Page:16

File Type:pdf, Size:1020Kb

La Derriksite, CU4(U02) (Se03)2 (OH)6' H20, Une Nouvelle Espèce Minérale Par FABIEN CESBRON, Laboratoire De Minéralogie-Cristallographie, Associé Au C Bull Soc. fr. Minéral. Cristallogr. (1971), 94, 534-537. La derriksite, CU4(U02) (Se03)2 (OH)6' H20, une nouvelle espèce minérale par FABIEN CESBRON, Laboratoire de Minéralogie-Cristallographie, associé au C. N. R. S., Université de Paris VI (1), ROLAND PIERROT, Direction du Service Géologique National, B. R. G. :vi., Orléans (2), et THÉODORE VERBEEK, Union Minière Exploration and :vIining Corporation Ltd, Toronto, Canada. Résumé. - La derriksite, CU4 (U02) (SeOS)2 (OH)6' Hp, a été trouvé à Musonoï, Katanga, othorhombique, Pnmm ou Pnm2 ; a = 5,57, b = 19,07, C = 5,96 A. Z = 2. a/b/c = 0,2921/1/0,3125. dx = 4,72. Les raies les plus intenses du diagramme de poudre sont les suivantes: 5,35 (mF), 4,78 (FFF), 4.35 (F), 4,07 (FF), 3,74 (FF), 3.43 (mF), 3,21 (F), 2,85 (mF), 2,43 (mF), 2,30 (mF), Analyse chimique (microsonde électronique) CuO = 35,67, UOs = 32,67, Se02 = 24,87, H20 = 8,10 (thermobalance CAHN) total = rol,31. Les cristaux vert clair sont allongés suivant [OOlJ et aplatis suivant (roo), bon clivage suivant (oro). Biaxe, 1,77, n'm = 1,85, 1,89; la courbe de déshydratation est donnée. n" = n'. = Ce nouveau minéral a été trouvé dans la zone d'oxydation du gisement cupro- cob alifère de Musonoï (avec demesmaekerite, marthozite, guilleminite) le nom est donné en l'honneur de J. Derriks. La derriksite a été approuvée avant publication par la Commission des nou- veaux minéraux et nom de minéraux de l'AIM. Derriksite, CU4 (U02) (SeOS)2 (OH)6' Hp, a new mineral. Abstract. - Derriksite, CUi (U02) (SeOS)2 (OH)6' H20 found in Musonoi, Katanga, is orthorhombic, Pnmm or Pnm2; a = 5.57, b = 19.07, c = 5.96 A, Z = 2. a/b/c = 0.2921/1/0.3125. dx = 4.72. The strongest lines in the powder pattern are: 5.35 (W), 4.78 (VVS) 4.35 (S), 4.07 (VS), 3.74 (VS), 3.43 (W), 3,21 (S), 2.85 (W), 2.43 (W). 2.30 (W). Analysis gave (microprobe) CuO = 35.67, UOs = 32.67, Se02 = 24.87, Hp = 8.10 (CAHN ther- mogravimetric analysis). Sumo 101.31. Crystals, clear green, are elongated on [OOlJ and flattened on (100). Cleavage good on (oro). Optically biaxal, n" = 1.77. n' m = 1.85, n'. = 1.89. The deshydratation curve is given. This new mineraI was found in the oxidation zone of Cu-Co deposit at Musonoi (with demesmaekerit, marthozite, guilleminite). Named in honour of J. Derriks. The mineraI was approved before publication by the Commission on new minerai and mineraI names of the IMA. INTRODUCTION. Ce nouveau minéral est nommé en l'honneur de Joseph DERRIKS, géologue, qui a étudié pen- La derriksite est le plus rare des uranyl-sélé- dant des années le célèbre gisement de Shinko- nites trouvés au Katanga dans la zone d'oxyda- lobwe. tion du gisement cupro-cobaltifère du Musonoï Ce nouveau minéral a été accepté par le Comité (R. Pierrot et al., 1965 et F. Cesbron et al., 1965 français de nomenclature puis soumis à la Com- et 1969). mission des nouveaux noms et des noms de miné- (1) Tour 16, 9, quai Saint-Bernard, Paris (5e). raux de l'AIM qui l'a acceptépar I8 voix contre 0 (2) Boîte postale 60°9, 45-0rléans-02. (vote I4 septembre I97I nO 3 de la liste I97I). 535 TABLEAU Il. MORPHOLOGIE. Diagramme de poudre de la derriksite. La derriksite se présente en enduits micro cris- -~--k1--- tallins de couleur vert clair à vert malachite sur 1 dca!~i des sulfo-séléniures de cuivre (digénite séléni- fère). Quelques rares cristaux, vert bouteille et ne dépassant pas 0,7 mm ont été observés sur 5,69 f 1 1 5,689 <fff °1 de la malachite en compagnie de cha1coménite 5,58 ° ° 5,57° et de demesmaekerite : ils ont pu être étudiés 5,35 mF 110 5,347 4,81 ff 120 4,4°9 au goniomètre à deux cercles. 4,78 FFF 4 4,768 ° ° 4,352 F 3 1 4,348 ° 4,197 mF 13° 4,189 4,°72 FF 1 1 4,°7° 3,983 f 1 °1 1 3,980 3,748 FF 121 3,743 3,629 ff 14° 3,622 3,432 mF 131 3,427 3,218 F 5 1 3,213 3,185 Hf °060 3,178 110 110 3,152 ff 15° 3,147 3,°98 f 141 3,°95 2,983 mf 2 2,980 2,850 mF ° °2 2 2,844 2,762 ff °16o 2,761 2,676 fff 220 2,673 2,632 ff 1 2 2,628 FIG. r. 2,606 ff 112° 2,6°3 2,556 ff 23° 2,551 2,537 Hf 122 2,533 2,529 ff 4 2 2,527 Ces cristaux, orthorhombiques, sont allongés ° suivant [00l] et aplatis, tout en étant légèrement 2 1 2,523 ° bombés, suivant (100) (fig. 1). Les coordonnées 2,5°6 f 161 2,5°5 211 des pôles des faces sont données dans le tableau 1. 2,5°1 f 7 1 2,478 ° Hf 17° 2,447 TABLEAU 1. 221 2,439 2,433 mF 132 2,428 Coordonnées des pôles 2,349 fffd 231 2,345 des faces de la derriksite. 2,3°6 mF 142 2,3°1 2,261 Hf 171 2,264 2,254 f 25° 2,249 (h k 1) p 2,169 f 062 2,174 152 2,164 2,096 Hf 26o 2,°95 fd 2 2 (0 1 0) 0° 2,036 2,°3'5 (1 0) a : b : c 0,2914 : ° 9°° = 1,996 ffd 9 1 1,997 (1 °1 0) 1 : 0,3137 73° 45' 1,987 ffd °222 l,99° (1 2 1) 59° 29' 1,953 Hf 27° 1,948 1,897 mf 3 3 1,896 1,876 ff °191 1,879 PROPRIÉTÉS CRISTALLOGRAPHIQUES. 242 1,871 1 3 1,871 1,839 f 123° 1,836 Les clichés obtenus à l'aide des chambres de 1,824 Hf 320 1,822 Weissenberg et de précession ont conduit aux 1,808 Hf 28o 1,8u valeurs suivantes: 1,798 ff 252 1,795 As 133 1,795 a = 5,57:1: 0,01 A V = 633 1,766 mf 182 1,766 b = 19,07 :1:0,03 A 311 1,765 c = 5,96:1: 0,01 A a: b :C= 0,2921 : 1 :0,3125 F. CESBRON, R. PIERROT ET T. VERBEEK Les groupes spatiaux possibles sont Pnmm ou microthermobalance CARN RG. Les résultats Pnm 2. Le diagramme de poudre (tableau II) a sont donnés dans le tableau IV et conduisent à été obtenu à l'aide d'une chambre Guinier-de la formule: Wolf Nonius, travaillant avec la longueur d'onde 4CuO . V03. 2Se02. 4R20, soit: du cuivre KiXl. CU4(V02) (Se03)2 (OR)6 .R20. PROPRIÉTÉS PHYSIQUES ET OPTIQUES. TABLEAU IV. ___n..__ La derriksite présente un très bon clivage sui- ---------- vant (010). La densité n'a pu être mesurée à cause (%) (%) RAPPORTS de la trop faible quantité de produit disponible; MOLÉCULAIRES avec un nombre d'unités formulaires égal à 2 ~---~_.._-- on obtient une densité théorique de 4,72, ce qui Cu 28,5 35,67 0,448 4 semble tout à fait admissible pour ce genre de U 27,2 32,67 0,114 1 composé. Se 17,7 24,87 0,224 2 La derriksite est biaxe, le plan des axes op- 8,10 0,450 4 tiques étant (010) l'orientation de l'ellipsoïde des Total 101,31 indices est la suivante: allnp, b1Inm et clin.. np est égal à 1,77, les deux autres, supérieurs à 1,80, n'ont pu être mesurés, le minéral étant instan- tanément corrodé par les liqueurs d'indice supé- COMPORTEMENT THERMIQUE. rieur à 1,800. Ces deux indices ont donc été obtenus à partir de la mesure des pouvoirs La courbe d'analyse thermogravimétrique a réflecteurs de la face (100) préalablement polie: été réalisée avec une électrobalance CARN RG les résultats, pour différentes longueurs d'onde, sur 4,96 mg de derriksite. Il n'est pas très facile sont rassemblés dans le tableau III. de distinguer entre la fin de la déshydratation et le début du départ de Se02 ; d'ailleurs l'absence TABLEAU III. de palier indique que le composé anhydre n'est pas obtenu. Nous interprétons cette courbe de Indices n' m # nm et n'. # n. de la derriksite la façon suivante. en fonction de la longueur d'onde. - jusqu'au point A : perte de la molécule d'eau de cristallisation; - du point A au point B : perte des trois mo- "nm n'. n' m "nm n'. n'nt lécules d'eau de constitution; -----.- --------"------------- - du point B au point C : départ de la pre- 420 1,97 l,go 580 1,88 1,82 mière molécule de Se02. 440 1,94 l,go 600 1,87 1,82 - du point C au palier final (D) : départ de 460 l,g2 1,88 620 1,87 1,82 la deuxième molécule de Se02. 480 l,go 1,86 640 1,87 1,81 Il est très vraisemblable que, comme pour les 500 l,go 1,85 660 1,87 1,81 520 1,89 1,85 680 1,86 1,80 autres uranyl-sélénites, le départ d'oxygène cor- 540 1,88 1,84 700 1,86 1,80 respondant à la réation 3V03 -+ V30S + 1/202 560 1,88 1,83 s'effectue en même temps que le départ de Se02.
Recommended publications
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • Demesmaekerite Pb2cu5(UO2)2(Se O3)6(OH)6 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1
    4+ Demesmaekerite Pb2Cu5(UO2)2(Se O3)6(OH)6 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Crystals are elongated along [001] and flattened on {100} or {010}, with dominant {100} and {010}, secondary faces typically striated k [101], to 1 cm; in radial aggregates. Physical Properties: Hardness = 3–4 D(meas.) = 5.28(4) D(calc.) = 5.42 Radioactive. Optical Properties: Translucent to opaque. Color: Bottle-green to pale olive-green, becoming brownish green with dehydration. Optical Class: Biaxial (+). Pleochroism: X 0 = yellow-green; Y 0 = brown. α = 1.835(5) (α 0) β = n.d. γ = 1.910(5) (γ 0) 2V(meas.) = n.d. Cell Data: Space Group: P 1. a = 11.955(5) b = 10.039(4) c = 5.639(2) α =89.78(4)◦ β = 100.36(4)◦ γ =91.34(4)◦ Z=1 X-ray Powder Pattern: Musonoi mine, Congo. 2.97 (FFF), 5.42 (FF), 5.89 (F), 3.34 (F), 5.14 (mF), 4.72 (mF), 4.67 (mF) Chemistry: (1) (2) SeO2 30.9 30.65 UO3 27.6 26.34 PbO 19.4 20.55 CuO 18.2 18.31 H2O 4.2 4.15 Total 100.3 100.00 (1) Musonoi mine, Congo; H2O by the Penfield method; corresponds to Pb1.87Cu4.93(UO2)2.08 • • (SeO3)6(OH)6.04 2H2O. (2) Pb2Cu5(UO2)2(SeO3)6(OH)6 2H2O. Occurrence: Rare in the lower oxidized portions of a selenium-bearing Cu–Co deposit. Association: Cuprosklodowskite, kasolite, guilleminite, derriksite, chalcomenite, malachite, selenian digenite.
    [Show full text]
  • Vibrational Spectroscopic Study of the Uranyl Selenite Mineral Derriksite
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117 (2014) 473–477 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa Vibrational spectroscopic study of the uranyl selenite mineral derriksite Cu4UO2(SeO3)2(OH)6ÁH2O ⇑ Ray L. Frost a, , JirˇíCˇejka b, Ricardo Scholz c, Andrés López a, Frederick L. Theiss a, Yunfei Xi a a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia b National Museum, Václavské námeˇstí 68, CZ-115 79 Praha 1, Czech Republic c Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil highlights graphical abstract We have studied the mineral derriksite Cu4UO2(SeO3)2(OH)6ÁH2O. A comparison was made with the other uranyl selenites. Namely demesmaekerite, marthozite, larisaite, haynesite and piretite. Approximate U–O bond lengths in uranyl and O–HÁÁÁO hydrogen bond lengths were calculated. article info abstract Article history: Raman spectrum of the mineral derriksite Cu4UO2(SeO3)2(OH)6ÁH2O was studied and complemented by Received 20 May 2013 the infrared spectrum of this mineral. Both spectra were interpreted and partly compared with the spec- Received in revised form 29 July 2013 tra of demesmaekerite, marthozite, larisaite, haynesite and piretite. Observed Raman and infrared bands Accepted 2 August 2013 were attributed to the (UO )2+, (SeO )2À, (OH)À and H O vibrations. The presence of symmetrically dis- Available online 22 August 2013 2 3 2 tinct hydrogen bonded molecule of water of crystallization and hydrogen bonded symmetrically distinct hydroxyl ions was inferred from the spectra in the derriksite unit cell.
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites
    Review Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites Vladislav V. Gurzhiy 1,*, Ivan V. Kuporev 1, Vadim M. Kovrugin 1, Mikhail N. Murashko 1, Anatoly V. Kasatkin 2 and Jakub Plášil 3 1 Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russian Federation; [email protected] (I.V.K.); [email protected] (V.M.K.); [email protected] (M.N.M.) 2 Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninskiy pr. 18, 2, Moscow, 119071, Russian Federation; [email protected] 3 Institute of Physics, The Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, Praha 8, 18221, Czech Republic; [email protected] * Correspondence: [email protected], [email protected] Received: 10 November 2019; Accepted: 28 November 2019; Published: 30 November 2019 Abstract: Comparison of the natural and synthetic phases allows an overview to be made and even an understanding of the crystal growth processes and mechanisms of the particular crystal structure formation. Thus, in this work, we review the crystal chemistry of the family of uranyl selenite compounds, paying special attention to the pathways of synthesis and topological analysis of the known crystal structures. Comparison of the isotypic natural and synthetic uranyl-bearing compounds suggests that uranyl selenite mineral formation requires heating, which most likely can be attributed to the radioactive decay. Structural complexity studies revealed that the majority of synthetic compounds have the topological symmetry of uranyl selenite building blocks equal to the structural symmetry, which means that the highest symmetry of uranyl complexes is preserved regardless of the interstitial filling of the structures.
    [Show full text]
  • Alt I5LNER&S
    4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237,
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites
    crystals Review Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites Vladislav V. Gurzhiy 1,* , Ivan V. Kuporev 1, Vadim M. Kovrugin 1, Mikhail N. Murashko 1, Anatoly V. Kasatkin 2 and Jakub Plášil 3 1 Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russian; [email protected] (I.V.K.); [email protected] (V.M.K.); [email protected] (M.N.M.) 2 Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninskiy pr. 18, 2, Moscow 119071, Russian; [email protected] 3 Institute of Physics, The Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 18221 Praha 8, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected] Received: 10 November 2019; Accepted: 28 November 2019; Published: 30 November 2019 Abstract: Comparison of the natural and synthetic phases allows an overview to be made and even an understanding of the crystal growth processes and mechanisms of the particular crystal structure formation. Thus, in this work, we review the crystal chemistry of the family of uranyl selenite compounds, paying special attention to the pathways of synthesis and topological analysis of the known crystal structures. Comparison of the isotypic natural and synthetic uranyl-bearing compounds suggests that uranyl selenite mineral formation requires heating, which most likely can be attributed to the radioactive decay. Structural complexity studies revealed that the majority of synthetic compounds have the topological symmetry of uranyl selenite building blocks equal to the structural symmetry, which means that the highest symmetry of uranyl complexes is preserved regardless of the interstitial filling of the structures.
    [Show full text]
  • Cu-680-Minerals-20160321
    Mineral Name IMA Chemistry (plain) 2+ 3+ Abswurmbachite Cu Mn 6O8(SiO4) 2+ 6+ Agaite Pb3Cu Te O5(OH)2(CO3) 2+ Agardite‐(Ce) Cu 6Ce(AsO4)3(OH)6∙3H2O 2+ Agardite‐(La) Cu 6La(AsO4)3(OH)6∙3H2O 2+ Agardite‐(Nd) Cu 6Nd(AsO4)3(OH)6∙3H2O 2+ Agardite‐(Y) Cu 6Y(AsO4)3(OH)6∙3H2O Aikinite CuPbBiS3 2+ Ajoite K3Cu 20Al3Si29O76(OH)16∙8H2O Aktashite Cu6Hg3As4S12 Aldridgeite (Cd,Ca)(Cu,Zn)4(SO4)2(OH)6∙3H2O Algodonite Cu1‐xAsx (x ~0.15) 1+ 2+ Allochalcoselite Cu Cu 5PbO2(SeO3)2Cl5 2+ Alpersite (Mg,Cu )SO4∙7H2O 2+ Alumoklyuchevskite K3Cu 3AlO2(SO4)4 Ammineite CuCl2(NH3)2 Andreadiniite CuHgAg7Pb7Sb24S48 2+ 6+ Andychristyite PbCu Te O5(H2O) Andyrobertsite KCdCu5(AsO4)4[As(OH)2O2]∙2H2O Ángelaite Cu2AgPbBiS4 Anilite Cu7S4 Annivite Cu10(Fe,Zn)2Bi4S13 Anthonyite Cu(OH)2∙3H2O Antipinite KNa3Cu2(C2O4)4 2+ Antlerite Cu 3SO4(OH)4 2+ Apachite Cu 9Si10O29∙11H2O Arcubisite Ag6CuBiS4 Argentotennantite Ag6Cu4(Fe,Zn)2As4S13 Arhbarite Cu2MgAsO4(OH)3 Arsentsumebite Pb2Cu(AsO4)(SO4)(OH) 3+ Arsmirandite Na18Cu12Fe O8(AsO4)8Cl5 3+ Arthurite CuFe 2(AsO4)2(OH)2∙4H2O Arzrunite Pb2Cu4SO4(OH)4Cl6∙2H2O Ashburtonite HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl Astrocyanite‐(Ce) Cu2Ce2(UO2)(CO3)5(OH)2∙1.5H2O Atacamite Cu2Cl(OH)3 Athabascaite Cu5Se4 2+ 3+ 3+ Atlasovite Cu 6Fe Bi O4(SO4)5∙KCl Attikaite Ca3Cu2Al2(AsO4)4(OH)4∙2H2O 2+ Aubertite Cu Al(SO4)2Cl∙14H2O 3+ 2+ Auriacusite Fe Cu AsO4O 2+ Aurichalcite (Zn,Cu )5(CO3)2(OH)6 Auricupride Cu3Au Avdoninite K2Cu5Cl8(OH)4∙2H2O Averievite Cu5O2(VO4)2∙CuCl2 Azurite Cu3(CO3)2(OH)2 Babánekite Cu3(AsO4)2∙8H2O 2+ 6+ Bairdite Pb2Cu 4Te 2O10(OH)2(SO4)∙H2O Balkanite
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Table S1. Selenim’s minerals: Chemical formula, type locality (TL) and number of localities (NL). Mineral Chemical Formula Formation (TL) NL Reference Achávalite FeSe Hydrothermal (1) 2 [1] Aguilarite Ag4SeS Hydrothermal (48) 65 [2] Ahlfeldite NiSeO32H2O Weathering (2) 2 [3] Alfredopetrovite Al2(SeO3)3·6H2O Weathering (3) 1 [4] Allochalcoselite CuCu5PbO2(SeO3)2Cl5 Volcanic (5) 1 [5] Antimonselite Sb2Se3 Hydrothermal (59) 6 [6] Athabascaite Cu5Se4 Hydrothermal (37) 14 [7] Bambollaite CuSe2 Hydrothermal (30) 3 [8] Bellidoite Cu2Se Hydrothermal (27) 6 [9] Berzelianite Cu2Se Hydrothermal (52) 61 [10] Bohdanowiczite AgBiSe2 Hydrothermal (33) 31 [11] Bornhardtite CoCo2Se4 Hydrothermal (57) 3 [12] Brodtkorbite Cu2HgSe2 Hydrothermal (58) 1 [13] Bukovite Cu4Tl2Se4 Hydrothermal (16) 10 [14] Burnsite KCdCu7(SeO3)2O2Cl9 Volcanic (5) 1 [15] Bytízite Cu3SbSe3 Hydrothermal (51) 2 [16] Cadmoselite CdSe Hydrothermal (56) 3 [17] Carlosruizite K6Na4Na6Mg10(SeO4)12(IO3)12·12H2O Weathering (11) 2 [18] Cerromojonite CuPbBiSe3 Hydrothermal (3) 1 [19] Chalcomenite CuSeO32Н2О Weathering (1) 35 [20] Chaméanite (Cu3Fe)Σ4AsSe4 Hydrothermal (20) 3 [21] Chloromenite Cu9(SeO3)4O2Cl6 Volcanic (5) 1 [22] Chrisstanleyite Ag2Pd3Se4 Hydrothermal (28) 5 [23] Clausthalite PbSe Hydrothermal (54) 239 [24] Cobaltomenite CoSeO3·2H2O Weathering (1) 12 [25] Crookesite Cu7TlSe4 Hydrothermal (52) 12 [26] Demesmaekerite Pb2Cu5(UO2)2(SeO3)6(OH)62H2O Weathering (7) 2 [27] Derriksite Cu4(UO2)(SeO3)2(OH)6·H2O Weathering (7) 1 [28] Downeyite SeO2 Weathering (26)
    [Show full text]
  • IMA–CNMNC Approved Mineral Symbols
    Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements
    [Show full text]
  • IMA Master List
    The New IMA List of Minerals – A Work in Progress – Updated: September 2014 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). CNMMN/CNMNC approved formula : it is the chemical formula of the mineral. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]