Presented !O the University of Manitoba Llasters of Sc I
Total Page:16
File Type:pdf, Size:1020Kb
Copper Oxysal!s: The Jahn-TeIIer Effect And Its StructuraL lmplications by Raymond K. Eby A thesis presented !o the University of Manitoba in fuIf i Llment of the thesis requirement for lhe degree of llasters of Sc i ence in Deparlment of Geologica). Sc i ences llinnipeg, Man i toba (c) naymond K. Eby, 1988 Permission has been granteal L'aut.origatíon a êtê accordêe to the Natlonal Llbrary of å ta Bibliothèque nationale Canada to nícrofi lm thís du Canada de ¡nicrof ilmer the6is and to lend or sell cette thèse et de prêter ou copies of the fi lm. de vendre des exenplalres du fllm. The author (copyríght owner ) Lr auteur (tltulaíre du droit, hae re6erved other d'auteur) ae réserve Iea publ icat íon rfghtB, and autrea droits de publ lcat ion; nelther the thesís nor nf Ia thèse ní de longa extensive extracCa from it. extraits de ce1le-ci ne may be printed or otherwíse doivent être inprímês ou reproduced nithout hle/her autrement repro¿lults 6ana gon vrritten pernission. autorleatlon êcrite. rsBN 0-315-47941-8 COPPER OXYSALTS: THE JAHN-TELLER IFFECT AND ITS STRUCTURAL IMPLICATIONS BY RAYMOND K. EBY A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfìllment of the requirenìeuts of the degree of MASTER OF SCIENCE o 1988 Permission has beeu granted to the LIBRARY OF THE UNIVER- SITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilnr this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFI LMS to publish an abstract of this thesis. The author reserves other publication rights, and neither the thesis no¡ extensive ext¡acts from it may be printed or other- wise reproduced without the author's wrilteir pernrissio:r. I hereby declare that I am the soLe author of this thesis. I authorize lhe University of Mânitoba to Lend this thesis !o other institutions or individuals for the purpose of scholarly research. Raymond K. Eby I further authorize the University of Manitoba to reproduce this thesis by photocopying.or by other means, in total or in pait, at the request of other institutions or individuals for lhe purpose of scholarly research. Raymond K. Eby - tl - The University of Manitoba requires the signatures of aIl persons using or pholocopying this thesis. Please sign below, and give address and date. ÀCKNOtlLEIN'EI{ENTS I l¡ish to thank the Natural Sciences and Engineering Research CounciL for their generosity in supporting my studies financiali.y. I also thank my advisor - Dr. Frank C. Hawthorne - for his inspirational. advice involving this thesis, I am also greatful to Dr. Fred Wicks and Dr. Ànthony Secco for giving their valuabLe time and effort to heLp make this thesis a coherent piece. - IV - ÀBSTRÀCT Copper oxysalts are a common class of minerals thal have been considered structurally anamalous. Some copper oxysalt structures have non-Cu analogues, bu! many do not, and the reasons for this have been unclear. The unique coordination environment of Cu2* is responsible for the anomalous character of Cu oxysalts. À regular octahedral coordination is unstable around Cu2* because of its degenerate de orbitat state. Spontaneous electronic relaxation (octahedral distortion) lifts the degeneracy, making distorted Cu-octahedra stable in structures. This is the Jahn-TeIler effect. By considering the complete coordination of Cu2*, the topology of Cu2* oxysalt structures is readily interpreted, and similarities to non-Cu oxysalts becorne eviden!. Nunerous studies have deaLt with only the local coordination environment of Cuz', but this study also deals with the long range structural effects of octahedral distortions e.g. ho¡+ distorled octahedra fit into strucLures, and the geometricaL/chenical consequences. Bond-valence analysis and mathematical simulation of crystal structures (using ÐLS) rtere used to study the structural effects of octahedral distortions. The Jahn-TelIer distortion provides a geonetrically flexible coordination environment for Cu2*, resul!ing in a wide variety of bond-valence distrÍbutions. This ftexibility creates the potential for polymerization styles not possible t¡ith un-distorted M2*-octahedra. Structural analyses show lwo fundanental structure types: 1) structures that cân be constructed from regular coordination poJ.yhedra, the arrangement of which can distort and accomodate the Jahn-Te11er distortion; and 2) structures that can onLy be constructed from very distorted coordination polyhedra. Isostructuralisrn is often possible in TYPE I structures, because of their geometrically flexible arrangements, Isostructuralism is not presen! in TYPE iI structures. Jahn-TelLer distortions are often coupled through structural symmetry by poJ.ymerization of Cu2*-octahedra. The resulting periodic electronic relaxations (PER) occur as waveforms commensurate with transLational symmeLry. Polymerization sLyIes control the type of waveform produced. Thus Cu2* oxysalts can be understood by anal.ysis of the local ocLahedral distortions and their influence on the long-range of structures. v1 CONTENTS ÀCKNOIILEDGEI,IENTS lv ÀBSTRÀCT chapter Þaqe I. iNTRODUCTION Cu2 t Oxysa I t s The Jahn-Teller Effect: Introductory Remarks Purpose of Thesi s Data Base Procedures: Experimental & Descriptive Bond-VaLence Theory: Bac kg round II. X-RÀY STRUCruRE REFINE}TENTS 13 Exper imental Methods 13 Data Collection . 13 Struclure Refinement . 15 Mineral Structure Ref inements 16 cornetite 16 Clinoclase ,..21 Euchroi !e . 26 Li rocon i te 28 III. À STRUCruRÀL CLÀSSIFICÀTION OF CUz+ OXYSÀIT I.IINERÂLS 36 Classi f icat ion Criteria 36 Isolated Polyhedra and Finite clusters 39 Inf inite Polyhedral Chains 43 Corner-Shar ing Cha ins 43 Octahedral Chains Edge-Sharing with 3*'T-groups 46 Edge-Sharing Cha ins 49 Cuo6-chains v¡i lhout. Te t rahedra : 49 CuO6-chains Flanked by Corner-Sharing Tetrahedra: 49 Inf inite Polyhedral Sheets ' 54 Edge-Sharing Cu-octahedral Sheets . 54 Fully Occupied Sheets: 54 Mixed Polyhedral Shee t s 64 Corner Sharing Sheets: 64 Edge-Sharing Sheels: 67 Structures of Polyhedral F ramewor k s 13 Calegory .\: Frameworks of Chains 't3 Corner-Sharíng Chains : 75 Edqe-Sharing Square Pyramidal Cuz*: . 78 - vt1 complex Edge-sharing 5*6M Linked to sing).e 3*aT: 80 Edge-Sha r i ng 6M-chains: 85 Category B: Frame!¡orks of sheets 98 Cu-Octahedral Sheets, Partially Occupied: 98 FuIIy Occupied Cu-Octahedral Sheets: 107 Complex Sheets of Mixed Polyhedra: . 107 Category C: Complex Octahedral Frameworks 117 ZeoI i te-Like Frameworks: 11'l Spinel-Type Frameworks: 121 Octahedral Diners and Trimers: 123 Summary 128 IV. THE IIÀHN-TELLER EFFECT ÀND LOCÀL CU2. ENVIRONI.EI'IT . 129 A DeLaiLed Explanation of the Jahn-TelLer Effect 129 The Coordinations of Cu?* 136 Octahedral Coordinati ons 139 Square Pyramids 0 Trigonal Bipyrarnids 156 Sguare Planar Cu2* 164 Unusual Cuz* Coordinations 166 Summary 167 V. BOND-VÀLENCE FEÀTT'RES OF CU2+ OXYSÀET STRUCN'RES 168 Bond-Valence Di str ibut ions 168 0c tahedra I Variations 168 Polymerization Features . .... 170 Sunnary 180 vI . DiSTÀNCE LEAST-SoUÀRES MODELLING OF CU2* oXYSÀLT STRUCnRES 181 The DLS Method . 181 Àpplication to Cu2* Oxysalt Structures 183 The General Problem 183 The MeLhod of Ànalysis 184 DLS Modeling of Rel-ated Slructure Types 189 The Olivenile croup . 189 The Kieserite Structure Group . 195 The Chalcomenile - Teinile Slructure 200 The Kröhnkite croup . 203 ÐLS Refinement of Unique Structure Types . 210 Lanmerile 210 Lindgreni te ; 211 Cha lc ocyan i te 214 Summary 21'l VII. THE ROLES OF CU2+ IN THE LONG NÀNGE STRUCN'RE OF OXYSÀLTS 219 À Geometrical Classification of Cuz' Oxysalt l.linerals 219 Long Range Àdaptation of Cu2- DisLortions in Structures 226 Periodic Electronic Relaxat.ions as waveforms 226 zíg-7,a9 Octahedral Chains 227 corrugated octahedral Sheets 230 v11¡ commensurate Modulation of Mixed-Type Polyhedral Layers 236 FinaL Summary . 238 REFERENCES 242 ÀÞÞend i x paqe À. STRUCI'I'RE FÀCTORS OF X-RÀY REFINEHENTS 251 cornet ite 252 CI inoclase 260 Euchroi te 269 Li roconi !e 276 B. DLS PROGRÀM OUTPUT 284 The 0liveni te Group 285 The Ke i seri te Group 293 The Chalcomeni te/Tei nite Struclure 296 The Kröhnk i !e Group 298 Lindgreni te & Chalcocyanite 303 !x L]ST OF TÀBLES pÊg!. cu2* Oxysalt Minerals Studied 6 Pertinent Data for cornetite . 17 Atomic (fractional) & Thermal ParaÍìeters for cornetite 18 Selected Bond Lengths (Â) of Cornetite . 19 Selected Bond Àngles (o) for Cornelile . , 20 Bond-Valences for Cornetite ..,,21 Pertinent Data for Clinocl.ase , 22 Àtomic (fractional) & Thermal Parameters for Clinoclase 23 Selected Bond Lengths (Â) of Clinoclase . , 24 Selected Bond Àngles (o) for Ctinoclase . 25 Bond-Valences for Clinoclase . .",..25 Pertinent Datä for Euchroite , 26 Àtornic (fracLional) 6, ThermaL Paraneters for Euchroite , , . 28 Selecled Bond Lengths (Â) of Euchroite . , 29 Selected Bond ÀngJ.es (o) for Euchroite 30 Bond-vaLences for Euchroile 31 Pertinen! Data for tiroconite . 32 Àtomic (fractional) & Thermal Parameters for Liroconite . 33 Selected Bond Lengths (Â) of Liroconite . 34 Selected Bond Angles (o) for Liroconite 35 Bond-Valences for Liroconite . 35 Shading Scheme For Polyhedral Drawings 38 3,2, Isolated Polyhedra and Finite Cluslers 39 3.3. Infinite Polyhedral Chains . ,44 3.4, ¡nfinite Polyhedral Sheets . 55 3.5. Polyhedral Framework Categories 73 3.6. caLegory À: Polyhedral Frameworks of Chains . , . 14 3.7. Bond-Valences for Àzurite 101 3.8. Category B: Frameworks of Sheels 102 3.9, Category c: Complex Octahedral Frameworks 118 4.1, Geornetrical Parameters for Cuztoe octahedra 140 4,2. Parameters for Five Coordinate Cu-Polyhedra 157 4.3. Square Planar CuO¿ . 164 4.4. Unusual Cu2t Coordinations . 156 6.1. CetI Dimensions of the Olivenite Group . 190 6.2. Atomic Dislance Violations in the Idealized 0Iivenite croup . 193 6.3. Bond-valence Tables for the Idealized Olivenite Group 194 6,4.