CRYSTAL STRUCTURE of Γ-Cu2v2o7 and ITS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Euchlorine Knacu3o(SO4)3 C 2001-2005 Mineral Data Publishing, Version 1
Euchlorine KNaCu3O(SO4)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As crystals, tabular on {001}, with rectangular outline, to 2 mm; typically as an incrustation. Physical Properties: Cleavage: In two directions. Hardness = n.d. D(meas.) = 3.27 D(calc.) = 3.28 Soluble in H2O. Optical Properties: Semitransparent. Color: Emerald-green; emerald-green in transmitted light. Optical Class: Biaxial (+). Pleochroism: X = pale grass-green; Y = grass-green; Z = bright yellow-green. α = 1.580 β = 1.605 γ = 1.644 2V(meas.) = Moderately large. Cell Data: Space Group: C2/a. a = 18.41(5) b = 9.43(3) c = 14.21(5) β = 113.7(3)◦ Z=8 X-ray Powder Pattern: Vesuvius, Italy. 8.44 (100), 2.816 (47), 2.544 (45), 2.843 (40), 2.852 (37), 3.475 (30), 3.237 (25) Chemistry: (1) (2) SO3 41.41 43.13 Al2O3 0.06 CuO 43.69 42.85 MgO 0.17 CaO 0.07 Na2O 6.35 5.56 K2O 8.25 8.46 Total [100.00] 100.00 (1) Vesuvius, Italy; by electron microprobe, average of seven analyses, recalculated to 100% 2− from an original total of 101.86%, (SO4) shown present by IR; corresponds to K1.01Na1.18 Mg0.02Ca0.01Cu3.15O1.27(SO4)3. (2) KNaCu3O(SO4)3. Occurrence: A rare sublimate around volcanic fumaroles. Association: Dolerophanite, eriochalcite, chalcocyanite, melanothallite (Vesuvius, Italy); stoiberite, fingerite, ziesite, th´enardite,mcbirneyite (Izalco volcano, El Salvador); eriochalcite, melanothallite, fedotovite, vergasovaite, chalcocyanite, dolerophanite, tenorite, cuprian anglesite, gold (Tolbachik volcano, Russia). -
New Mineral Names*
American Mineralogist, Volume 73, pages 1492-1499. 1988 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada ERNST A. J. BURKE lnstituut voor Aardwetenschappen, Vrije Universitiete, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. SCOTT ERCIT, JOEL D. GRICE National Museum of Natural Sciences, Ottawa, Ontario KIA OM8, Canada Acuminite* prismatic to acicular crystals that are up to 10 mm long and 0.5 H. Pauly, O.Y. Petersen (1987) Acuminite, a new Sr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonal in cross section, showing {l00} and {l10}. Perfect {100} 502-514. cleavage, conchoidal fracture, vitreous luster, H = 4, Dm'.. = 2.40(5) glcm3 (pycnometer), Dcale= 2.380 glcm3 for the ideal Wet-chemical analysis gave Li 0.0026, Ca 0.0185, Sr 37.04, formula, and Z = 4. Optically biaxial positive, a = 1.5328(4), (3 Al 11.86, F 33.52, OH (calc. from anion deficit) 6.82, H20 (calc. = 1.5340(4), 1.5378(4), 2 Vmoa,= 57(2)°, 2 Vcale= 59°; weak assuming 1 H20 in the formula) 7.80, sum 97.06 wt%, corre- 'Y = dispersion, r < v; Z = b, Y A c = -10°. X-ray structural study sponding to Sro98AIl.o2F.o7(OH)o.93H20. The mineral occurs as indicated monoclinic symmetry, space group C21c, a = 18.830(2), aggregates of crystals shaped like spear points and about I mm b= I 1.517(2), c= 5.190(I)A,{3 = 100.86(1)°. A Guinierpowder long. -
Oxidizing-Type Fumaroles of the Tolbachik Volcano, a Mineralogical and Geochemical Unique
Russian Geology and Geophysics © 2020, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 61, No. 5-6, pp. 675–688, 2020 DOI:10.15372/RGG2019167 Geologiya i Geofizika Oxidizing-Type Fumaroles of the Tolbachik Volcano, a Mineralogical and Geochemical Unique I.V. Pekova,b, , A.A. Agakhanovс, N.V. Zubkovaa, N.N. Koshlyakovaa, N.V. Shchipalkinaa, F.D. Sandalova, V.O. Yapaskurta, A.G. Turchkovaa, E.G. Sidorovd a Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia b Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow, 119991, Russia c Fersman Mineralogical Museum, Leninskii pr. 18/2, Moscow, 119071, Russia d Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, bul. Piipa 9, Petropavlovsk-Kamchatsky, 683006, Russia Received 1 July 2019; accepted 28 August 2019 Abstract—We overview recent data on the mineralogy of oxidizing-type fumaroles of the Tolbachik Volcano (Kamchatka, Russia), with the main focus on the chemical specifics of the minerals. The active fumarole fields of Tolbachik are the most prominent mineral- forming exhalative system of this type in the world. About 350 mineral species, including 123 minerals first discovered here, are reliably identified in the Tolbachik fumaroles. The species diversity and the specifics of this mineralization are due to the unique combination of the physicochemical conditions and mechanisms of its formation: high temperatures, atmospheric pressure, superhigh oxygen fugacity, gas transport of most of chemical elements, and direct deposition of many high-temperature minerals from volcanic gases with a specific geo- chemical composition, including strong enrichment in alkaline metals and chalcophile (“ore”) elements. -
Copia Di IMA Master List
The New IMA List of Minerals – A Work in Progress – Update: November 2012 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p. -
Download the Scanned
American Mineralogist, Volume 73, pages 1492-1499, 1988 NEW MINERAL NAMES* JoHN L. JAlvrnon CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl, Canada Enxsr A. J. Bunxn Instituut voor Aardwetenschappen,Vrije Universitiete, De Boelelaan 1085, l08l HV, Amsterdam, Netherlands T. Scorr Encrr, Jonr, D. Gnrcr National Museum of Natural Sciences,Ottawa, Ontario KIA OME, Canada prismatic to acicular crystalsthat are up to 10 mm long and 0.5 H. pauly,o.v. perersenl;H"I;.,"ite, a newSr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonalin crosssection, showing { 100} and { I 10}. Perfect { 100} 502-514. cleavage,conchoidal fracture, vitreous luster, H : 4, D^,, : 2.40(5)g/cm3 (pycnometer), D"L: 2.380 g/cm3 for the ideal Wet-chernicalanalysis gave Li 0.0026,Ca 0.0185,Sr 37.04, formula, and Z : 4. Optically biaxial positiv e, a : I .5328(4),B Al 11.86,F 33.52,OH (calc.from anion deficit)6.82, H,O (calc. : r.5340(4),t : r.5378@),2v^. 57(2),2v*: 59o;weak assuming I HrO in the formula) 7.80, sum 97.06 wto/o, ": cone- dispersion,r < v; Z: b, f A c: -10". X-ray structuralstudy spondingto SrorrAl,orF4oT(OH)oe3H2O.The mineral occrusas indicatedmonoclinic symmetry,space group C2/c, a: 18.830(2), aggregatesof crystals shapedlike spear points and about I mm b : Ll.5I7(2), c : 5.190(1) A, B : TOO.SO(1)".A Guinier powder long. Dominant forms are and vdth rarc. -
A New Mineral Species from the Tolbachik Volcano, Kamchatka Peninsula, Russia
921 The Canadian Mineralogist Vol. 45, pp. 921-927 (2007) DOI : 10.2113/gscanmin.45.4.921 PAUFLERITE, -VO(SO4), A NEW MINERAL SPECIES FROM THE TOLBACHIK VOLCANO, KAMCHATKA PENINSULA, RUSSIA Sergey V. KRIVOVICHEV§ Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia Lidiya P. VERGASOVA Institute of Volcanology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatskiy, 683006, Russia Sergey N. BRITVIN Department of Mineral Deposits, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia Stanislav K. FILATOV Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia Volker KAHLENBERG Institut für Mineralogie und Petrographie, Leopold-Franzens-Universität Innsbruck, Innrain 52, A–6020 Innsbruck, Austria Vladimir V. ANANIEV Institute of Volcanology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatskiy, 683006, Russia Abstract Paufl erite, -VO(SO4), is a new mineral species from the fumaroles of the Great Fissure Tolbachik eruption (GFTE), Kamchatka Peninsula, Russia. It was found in 1977 in the fi rst cinder cone of the North breach of the GFTE. The mineral occurs as light green prismatic crystals up to 0.1 mm in length, associated with shcherbinaite (V2O5), an unknown Tl–Bi sulfate and fi nely crystalline Mg, Al, Fe and Na sulfates. Paufl erite is light green with a white streak and vitreous luster; the mineral is transparent and non-fl uorescent. The Mohs hardness is 3–4. Paufl erite is brittle, and without visible cleavage. The density is 3.36(4) (measured) and 3.294 g/cm3 (calculated). The mineral is biaxial, optically positive, ␣ 1.731(4),  1.778(2), ␥ 1.845(4), with 2Vmeas ≈ 90°, and 2Vcalc equal to 83°. -
General Index
GENERAL INDEX General Index The following abbreviations appear after page numbers. m A map of the locality or a map on which the locality In the case of special issues, the letter precedes the page ( ) Reported from this locality; no further information appears number. b Book review n Brief descriptive note, as in “What’s New in T Tsumeb (vol. 8, no. 3) c Crystal morphology information Minerals?” M Michigan Copper Country (vol. 23, no. 2) d Crystal drawing p Photograph or other illustration Y Yukon Phosphates (vol. 23, no. 4) ff Continues on following non-consecutive pages, or q Quantitative data (x-ray data, chemical analysis, G Greenland (vol. 24, no. 2) referenced frequently throughout lengthy article physical properties, etc.) H History of Mineral Collecting (vol. 25, no. 6) g Geologic information s Specimen locality attribution only; no information h Historical information about the locality itself ABELSONITE Santo Domingo mine, Batopilas district, af- Austria United States ter argentite cubes 17:75p, 17:78 Knappenwand, Salzburg 17:177p; “byssolite,” Utah Guanajuato in apatite 17:108p Uintah County (crystalline) 8:379p Reyes mine: 25:58n; after argentite 7:187, Brazil 7: 18: ABERNATHYITE 188p; after cubic argentite 433n; ar- Bahia borescent, on polybasite 18:366–367n; Brumado district (crystals to 25 cm; some Vs. chernikovite (formerly hydrogen autunite) crystals to 2.5 cm 14:386; 7 cm crystal curved) 9:204–205p 19:251q 17:341n Canada France Namibia British Columbia Lodéve, Herault 18:365n Tsumeb (disseminated) 8:T18n Ice River complex (tremolite-actinolite, green ACANTHITE Norway fibrous) 12:224 Australia Kongsberg (after argentite; some after silver Québec Queensland wires, crystals) 17:33c B.C. -
Blossite, A-Cu4+Y|+Or, a New Fumarolic Sublimate from Izalco
American Mineralogist, Volume 72, pages397-400, 1987 Blossite, a-Cu4+Y|+Or,a new fumarolic sublimate from Izalco volcano, El Salvador Paur,D. RonrxsoN Department of Geology, Southern Illinois University, Carbondale,Illinois 62901, U.S.A. JoHN M. Hucnps Department of Geology, Miami University, Oxford, Ohio 45056, U.S.A. MlnyANN L. Mal,rNcoNrco Department of Geology, Southern Illinois University, Carbondale,Illinois 62901, U.S.A. Ansrucr Blossite, a-CurYrOr, occurs as a fumarolic sublimate in the "Y" fumarole of Izalco volcano, El Salvador. The mineral is the natural analogue of the previously described synthetic phase, and is the the low-temperature polymorph of ziesite, 0-CurV'O', which was discoveredat the same site. The crystalsare orthorhombic, Fdd2, :u/rtha : 20.676(6), b:8.392(3), and c : 6.446(2)A. ttre crystal structurewas refined to R : 0.047. The atomic arrangementconsists of (100) planes of (VrOr)o- anionic groups; adjacent planes along [00] are linked by Cu2* in fivefold coordination. On the basis of previously deter- mined atomic arrangements,the a-B (blossite-ziesite)phase transition is of the non-near- est-neighborreconstructive type. Blossite occursas a equant, black anhedral crystalsup to 150 rrm in greatestdimension. The mineral has a metallic luster and a red-brown streak. The calculateddensity (Z: 8) is 4.05 I g/cm3. Blossite is opaque, and white in blue-filtered white light in air, with weak to moderate bireflectancein shadesof creamy-white, and a moderate anisotropy, from gray to creamy brown-gray. Minimum and maximum reflectancevalues (in air) are 481 nm, 14.6,15.3o/o;547 nm, 15.4,16.60/o;591 nm, 14.8,16.70/o, and,644 nm, 14.5,15.7o/o. -
Combinatorial Synthesis and High-Throughput Characterization of Multinary Vanadate Thin-Film Materials Libraries for Solar Water Splitting’ Supervisors: Prof
Combinatorial Synthesis and High- Throughput Characterization of Multinary Vanadate Thin-Film Materials Libraries for Solar Water Splitting Dissertation zur Erlangung des Grades Doktor-Ingenieurin der Fakultät für Maschinenbau der Ruhr-Universität Bochum von Swati Kumari aus Begusarai, India Bochum 2020 The presented work was carried out from August 2016 to April 2020 at the chair of Materials Discovery and Interfaces (MDI) under the supervision of Prof. Dr.-Ing. Alfred Ludwig in the Institute for Materials, Department of Mechanical Engineering, Ruhr-Universität Bochum, Germany. Dissertation eingereicht am: 21.04.2020 Tag der mündlichen Prüfung: 27.05.2020 Vorsitz: Prof. Dr.-Ing. Andreas Kilzer Erstgutachter: Prof. Dr.-Ing. Alfred Ludwig Zweitgutachter: Prof. Dr. rer. nat. Wolfgang Schuhmann “Child-like curiosity – seeking, questioning, and understanding – is the basis of knowledge that opens up new avenues that we call progress.” – Klaus von Klitzing – Abstract Solar water splitting using a photoelectrochemical cell (PEC) is an attractive route for the generation of clean and renewable fuels. PEC cell converts solar energy into an intermediate chemical energy carrier such as molecular hydrogen and oxygen. The solar-driven oxygen evolution at photoanode is limited due to the lack of materials with suitable optical, electronic properties, and operational stability. In this thesis, combinatorial synthesis and high- throughput characterization methods were used to investigate the suitability of multinary vanadium-based material systems for PEC application. Multinary ternary (M-V-O) and quaternary (M1-M2-V-O) metal vanadium oxide photoanodes: Fe-V-O, Cu-V-O, Ag-V-O, W-V-O, Cr-V-O, Co-V-O, Cu-Fe-V-O, and Ti-Fe-V-O materials libraries were synthesized using combinatorial reactive magnetron sputtering with a continuous composition and thickness gradients. -
Cu-680-Minerals-20160321
Mineral Name IMA Chemistry (plain) 2+ 3+ Abswurmbachite Cu Mn 6O8(SiO4) 2+ 6+ Agaite Pb3Cu Te O5(OH)2(CO3) 2+ Agardite‐(Ce) Cu 6Ce(AsO4)3(OH)6∙3H2O 2+ Agardite‐(La) Cu 6La(AsO4)3(OH)6∙3H2O 2+ Agardite‐(Nd) Cu 6Nd(AsO4)3(OH)6∙3H2O 2+ Agardite‐(Y) Cu 6Y(AsO4)3(OH)6∙3H2O Aikinite CuPbBiS3 2+ Ajoite K3Cu 20Al3Si29O76(OH)16∙8H2O Aktashite Cu6Hg3As4S12 Aldridgeite (Cd,Ca)(Cu,Zn)4(SO4)2(OH)6∙3H2O Algodonite Cu1‐xAsx (x ~0.15) 1+ 2+ Allochalcoselite Cu Cu 5PbO2(SeO3)2Cl5 2+ Alpersite (Mg,Cu )SO4∙7H2O 2+ Alumoklyuchevskite K3Cu 3AlO2(SO4)4 Ammineite CuCl2(NH3)2 Andreadiniite CuHgAg7Pb7Sb24S48 2+ 6+ Andychristyite PbCu Te O5(H2O) Andyrobertsite KCdCu5(AsO4)4[As(OH)2O2]∙2H2O Ángelaite Cu2AgPbBiS4 Anilite Cu7S4 Annivite Cu10(Fe,Zn)2Bi4S13 Anthonyite Cu(OH)2∙3H2O Antipinite KNa3Cu2(C2O4)4 2+ Antlerite Cu 3SO4(OH)4 2+ Apachite Cu 9Si10O29∙11H2O Arcubisite Ag6CuBiS4 Argentotennantite Ag6Cu4(Fe,Zn)2As4S13 Arhbarite Cu2MgAsO4(OH)3 Arsentsumebite Pb2Cu(AsO4)(SO4)(OH) 3+ Arsmirandite Na18Cu12Fe O8(AsO4)8Cl5 3+ Arthurite CuFe 2(AsO4)2(OH)2∙4H2O Arzrunite Pb2Cu4SO4(OH)4Cl6∙2H2O Ashburtonite HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl Astrocyanite‐(Ce) Cu2Ce2(UO2)(CO3)5(OH)2∙1.5H2O Atacamite Cu2Cl(OH)3 Athabascaite Cu5Se4 2+ 3+ 3+ Atlasovite Cu 6Fe Bi O4(SO4)5∙KCl Attikaite Ca3Cu2Al2(AsO4)4(OH)4∙2H2O 2+ Aubertite Cu Al(SO4)2Cl∙14H2O 3+ 2+ Auriacusite Fe Cu AsO4O 2+ Aurichalcite (Zn,Cu )5(CO3)2(OH)6 Auricupride Cu3Au Avdoninite K2Cu5Cl8(OH)4∙2H2O Averievite Cu5O2(VO4)2∙CuCl2 Azurite Cu3(CO3)2(OH)2 Babánekite Cu3(AsO4)2∙8H2O 2+ 6+ Bairdite Pb2Cu 4Te 2O10(OH)2(SO4)∙H2O Balkanite -
Fingerite, Curroz(Vot)Et a New Yanadium Sublimate from Lzalco Volcano, El Salvador: Descriptivemineralogy
American Mineralogist, Volume 70, pages 193-j96, I9E5 Fingerite, CurrOz(VOt)et a new yanadium sublimate from lzalco volcano, El Salvador: descriptivemineralogy JosN M. HucHes Department of Geology Miami University, Oxford, Ohio 45056 aNo C. G. Haoruecos Geophysical Laboratory 2801 Upton Street, N.W., Washington, D. C. 20008 Abstract Fingerite, cu11o2(voa)6,o h€w copper vanadatemineral, has been discoveredin the summit crater fumaroles of Izalco volcano, El Salvador, Central America. The mineral, which occurs with thenardite and euchlorine, forms as a sublimate product from the volcanic gases.Fingerite occurs as euhedral, subhedraland anhedralcrystals up to 150pm in greatestdimension. Fingeriteis triclinic, PT,a :8.1576(6), b = 8.2691(5),c :8.0437(7)A, u: l}'t.t44(5), : F 91.389(7),y = 106.441(5)'and V = 493.84(0A3.ttre five most intense lines on the Gandolfipattern are 6.48(100;Tt0, 0tT;, 3.894(60;200,120),3.042(80; otz, t20),2.822(70; 122, 2-12)and 2.025(70 ; 203). Fingerite is black with a metallic luster and opaque.The calculateddensity of fingerite is 4-776gnlcc, z : l.In reflectedlight in air, fingeriteis mediumgray, non-pleochroicand exhibits 2 extinctions per complete rotation of the stage. The reflectance of randomly orientedgrains in blue-filteredwhite light in air is 2l-rTVo. Milligram amounts of the mineral exist. Type specimensare on deposit at the National Museum of Natural History, Smithsonian Institution and the Geophysical Laboratory, CarnegieInstitution of Washington.The mineral is namedin honor of Dr. Larry W. Finger, Geophysical Laboratory. Introduction Locality and occurrence Naturally occurring Cu11O2(VOa)6has been discovered Izalco volcano is a basaltic composite cone that has in the fumaroles in the summit crater of Izalco volcano, been intermittently active since its birth in 1770.