GEOGRAPHICAL LOCATION of MINERAL TYPE LOCALITIES Alexander A

Total Page:16

File Type:pdf, Size:1020Kb

GEOGRAPHICAL LOCATION of MINERAL TYPE LOCALITIES Alexander A #13a_evseev_en_0802:#13a_evseev_en_0802.qxd 21.05.2009 20:41 Page 113 New data on minerals. M.: 2003. Volume 38 113 UDC 549 (1) GEOGRAPHICAL LOCATION OF MINERAL TYPE LOCALITIES Alexander A. Evseev Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, email: [email protected] An inventory of mineral type localities at which more than three new mineral species were discovered (nearly 200 sites over the world) has been compiled. Their geographical locations have been refined (the coordinates are presented) using the multimedia Microsoft Encarta2001 World Atlas. Examples of the earliest (regarding the year of the publication) and last finds of new minerals are presented for each of the type localities. These data can be used for expansion of museum collections at the expense of additions of type specimens. The place of discovery, or the type locality preceding a TL name is the number of new (TL), is obligatorily specified in publications on species discovered here; the data borrowed new minerals. However, the geographical loca- from the work by Pekov (2000) are asterisked. tion is commonly the least precise characteris- For each TL, examples of finds of new minerals tic in the descriptions of the finds. The geo- are provided from among the first (the year of graphical location of the finds determines their the publication is specified) and last ones. In scientific and collectional value and, therefore, addition to the type locality proper, the inven- it is of particular importance for large tory includes some districts 10–40 km across, worldclass museums that are interesting in if they incorporate several TL. It is obvious that standards of new minerals with their TL. comparing the objects in the number of new The interest to the type localities has begun species and in the mineral diversity, it is impor- to increase from the 1960s. For example, com- tant to take into account their sizes and sur- prehensive reviews of new minerals were roundings, since finds derived from type local- already present in summaries on mineralogy of ities different in name (or with different geo- Colorado (Eckel, 1961), Japan (Introduction..., graphical locations) can belong to one and the 1970), and other regions. In 1970, Embrey and same ore district, massif, and formation, or can Hey were the first to consider in detail the con- be located very nearly to each other. cept of type specimens (Embrey and Hey, In this respect, it is useful to compile maps of 1970). In the 1990s, the international project regions (or countries), showing the TL location was already being realized on compilation of (see below). However, this problem is difficult the Catalogue of Type Mineral Specimens to solve using ordinary geographical atlases, (CTMS); its parts were the work on Zair pub- maps 1:500000, and referencebooks on miner- lished in 1995 by M. Deliens and H.A. Stalder al deposits, since even many famous mineral and others. A preliminary inventory including type localities (Langban, Lengenbach, Ilima - reliable new mineral species etc. from the ussaq, etc.) are missing from them. The use of United States (arranged by the states) was com- the Encarta2001 World Atlas that contains piled by 1993 by V.T. King (remained unpub- 1.8 mil lions of geographical names facilitates lished). In 1998, Pekov published a summary the work, although the problem is not com- on new minerals from the former Soviet Union, pletely removed. Thus, the atlas does not con- the most comprehensive work among publica- tain some names (for example, Ilmeny = Ilme - tions on this subject. The first referencebook nskiye Mountains); on the other hand, it conta- where an effort was made to specify the TL for ins many names identical to each other, which each mineral species was probably the work by hampers the search. Nickel and Nichols (1991). The number of TL Thus, the name Panasqueira, Portugal, that mentioned in this referencebook exceeds is often encountered in mineralogical litera- 1500. Using the summaries by Nickel and ture, is repeated 7 times in Encarta2001. The Nichols, Pekov, and Mandarino (1997), as well sa me is true for Antisirabe, Madagascar (15 ti - as other works, I have compiled the present mes); Mooihoek, South Africa (6 times); and inventory of type localities where more than SareSang, Afghanistan (7 times, none of them three new mineral species were discovered being coincident with the famous lazurite (data are as of the late 1990s). deposit). The same problems persist with This inventory includes about 200 TL for respect to finds of new minerals, made in the which the geographical coordinates are pre- last few years. The TL of esperanzaite (the year sented with the use of the multimedia Mic - 2000) is La Esperanza, Durango, Mexico; but rosoft Encarta2001 World Atlas. The figures the atlas refers to three populated localities La #13a_evseev_en_0802:#13a_evseev_en_0802.qxd 21.05.2009 20:41 Page 114 114 New data on minerals. M.: 2003. Volume 38 Esperanza in this state. The TL of onite (1998), 9 – Barberton district \(25°48`S, 31°03`E), famous Tunaberg, is absent from the atlas, but Transvaal, South Africa \\1921trevorite there exists another point under the same (Bon Accord 282 JU);…1978nichromite name here. The TL of damiaoite (1997) is «the (Bon Accord 282 JU) village of Damiao, 270 km apart from Beijing»; 4 – Bastnas \Riddarhyttan (59°49`N, 15°33`E), the atlas refers to 6 villages under this name in Vastmanland, Sweden \\1841bastna- this region of China, but none of them is situat- site(Ce);…1921tornebohmite(Ce) (toe ed at the distance specified above. Another rnebo h mite(Ce)) problem is related to an existence of different 4 – Baveno \(45°55`N, 8°30`E), Piemonte, Italy versions (including distorted ones) of Russian \\* 1901bavenite; 1998scandio babin gto ni te transcriptions for geographical names of for- 12 – Bayan Obo = Bayin Obo \(41°46`N, eign localities (for example, for the Italian 109°58`E), Inner Mongolia, China names Leviglinani, Cetino, and Cerchiara). \\1959bafertisite;…1987baiyneboite(Ce) Incidentally, the name Cercharia is contained 10 – Bellerberg q. \SE of Ettringen, 2 km N of in Encarta2001, but the locality it specifies is Mayen (50°19`N, 7°13`E), Laacher See not the place where caoxite and mozartite were Area, Eifel, Germany \\1874ettringite; discovered. …1983eif e lite; 1999schaferite The correctness of the names and locations 4 – Bergen \(50°28`N, 12°16`E), 7 km W of is an individual issue (Evseev, 2000). Renamed Falkenstein, Saxony, Germany TL, different TL under the same name, different \\1877Uranocircite ;…1984Bergenite spelling versions of the names, and dissimilar 4 – Big Chief m. \[~5 km SE of] Keystone approaches to the location – all these compli- (43°53`N, 103°25`W), Pennington Co., So - cations make serious problems for many muse- uth Dakota, USA \\1974perlof- ums, collections, and publications. Signi fica - fite;…1984sinka nkasite nce of these problems can be estimated on the 8 – Big Creek and Rush Creek area \~8 km NE example of the inventory of 200 principal TL of Trimmer (36°54`N, 119°17 `W), Fresno which comprise only a share of a percent of the Co., California, USA \\1965fresnoite; total number of mineral localities. …2001 kampfite 4 – Big Fish River \(68°28`N, 136°30`W), Yukon, Canada \\1977maricite;… 1981wic ksi te Principal mineral type localities 9 – Big Fish River and Rapid Creek (see below) (area) \Yukon, Canada \\1976bari ci te; Abbreviations: …1986rapidcreekite (Dst.) district, area; 30 – Binntal = Binnental = Val di Binn \E of (Co.) county; Binn (46°22`N, 8°10`E), Valais (= Wallis), (m.) mine; Switzerland (finds in area 6 х 6 km, includ- (Mf.) massif; ing Cherbadung (= Pizzo Cervandone, (Q.) quarry; Italy)) \\1845dufrenoysite;…1994fetiasite (N) north, northern latitude; (Gorb); 1998graeserite(Monte Leone thrust) (S) south, southern latitude; 5 – Bisbee \(31°26`N, 109°55`W) (area), Co - (W) west, western longitude; chise Co., Arizona, USA \\1891paramela- (E) east, eastern longitude. conite;…1983henryite 22 – Black Hills \ (area 160 х 88 km); pegma - 9 – Alsar \5 km NE from Rozden (41°11`N, 21° tites of area of Custer (43°46`N, 103°36`W) 57`E), F.Y.R.O. Macedonia \\1894loran- and Keystone (43°53`N, 103°25`W); Pen - dite;…1989bernardite; 1994dorallcharite nin gton\ Custer Co., South Dakota, USA 5 – Baia Sprie \ (47°39`N, 23°40`E), Romania \\1891griphite;…1989para robertsite \\1853felsobanyaite (fel- 7 – Bon Accord \15 km NE from Barberton sobanyite);…1929klebelsbergite (25°48`S, 31°03`E) Distr., Transvaal, South 5 – Baita Bihorului \[=Baita: 46°29`N, 22°34`E], Africa \\1921trevorite;…1978nichromite Romania \\1861szaibely ite; …1985 5 – Bou Azzer \(30°31`N, 6°54`W), Morocco padera ite; 1994makovickyite \\1956smolianinovite;…1987wendwilso ni te 5 – Bambolla m. \Moctezuma (29°48`N, 9 – Branchville \ about 6 km E of Redding 109°41`W), Sonora, Mexico \\1972bam- (41°18`N, 73°23`W, Fairfield Co., Con necti - bollaite;…1989cervelleite c ut, USA \\1878eosphorite;…1880eucryp ti te 7 – Bambollita (=La Oriental) m. \Mo cte - 12 – Broken Hill \(31°58`S, 141°28`E), New zuma (29°48`N, 109°41`W), Sonora, Mexi - South Wales, Australia \\1892marshi te; co \\1973 quetzalcoatlite;…1979tlapallite …1992 segnitite; Sutherland F.L., 2000 #13a_evseev_en_0802:#13a_evseev_en_0802.qxd 21.05.2009 20:41 Page 115 Geographical Location of Mineral Type Localities 115 Basic type localities of Kola Peninsula, Russia Fig. 1. Fig. #13a_evseev_en_0802:#13a_evseev_en_0802.qxd 21.05.2009 20:41 Page 116 116 New data on minerals. M.: 2003. Volume 38 5 – Buca della Vena m. \Stazzema (43°59`N, 9 – Death Valley \(area ~130 х 15 km), Inyo 10°18`E), Tuscany, Italy \\1979apua ni te; Co., California, USA \\1883colemanite …1997dessauite; 1999scainiite (Furnace Creek, 512 km NW of Ryan 4 – Bultfontein m.
Recommended publications
  • An Application of Near-Infrared and Mid-Infrared Spectroscopy to the Study of 3 Selected Tellurite Minerals: Xocomecatlite, Tlapallite and Rodalquilarite 4 5 Ray L
    QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. and Reddy, B. Jagannadha (2009) An application of near-infrared and mid- infrared spectroscopy to the study of selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite. Transition Metal Chemistry, 34(1). pp. 23-32. © Copyright 2009 Springer 1 2 An application of near-infrared and mid-infrared spectroscopy to the study of 3 selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite 4 5 Ray L. Frost, • B. Jagannadha Reddy, Eloise C. Keeffe 6 7 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 8 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 9 Australia. 10 11 Abstract 12 Near-infrared and mid-infrared spectra of three tellurite minerals have been 13 investigated. The structure and spectral properties of two copper bearing 14 xocomecatlite and tlapallite are compared with an iron bearing rodalquilarite mineral. 15 Two prominent bands observed at 9855 and 9015 cm-1 are 16 2 2 2 2 2+ 17 assigned to B1g → B2g and B1g → A1g transitions of Cu ion in xocomecatlite. 18 19 The cause of spectral distortion is the result of many cations of Ca, Pb, Cu and Zn the 20 in tlapallite mineral structure. Rodalquilarite is characterised by ferric ion absorption 21 in the range 12300-8800 cm-1. 22 Three water vibrational overtones are observed in xocomecatlite at 7140, 7075 23 and 6935 cm-1 where as in tlapallite bands are shifted to low wavenumbers at 7135, 24 7080 and 6830 cm-1. The complexity of rodalquilarite spectrum increases with more 25 number of overlapping bands in the near-infrared.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    INDEX,VOLUME 59* Absorption coefficients Albite, continued attapulgite 1113 1ow-, comparison with ussingite 347 clay ninerals 11r3 nelting in nultispecies fluid 598 dickite 274 Alexandrite, chrorniumIII centers in 159 hal loysite 274 hectorite I 113 ALLAN, DAVID illite 1113 with V. Brown, and J. Stark, Rocke kaolinite 274 and Minez,als of Califowi,a; reviewed metabentonite 1113 by J. Murdoch 387 nontronite 1113 Allemontite, see stibarsen 1331 srnectite 1113 ALLMAN,MICHAEL Absorption spectra with D.F. Lawrence, Geological alexandrite, synthetic 159 Labonatony Techni.ques reviewed apophyllite 62I ; by F.H. Manley and W.R. Powers IL42 garnet 565 olivine 244 A1lophane rhodonite.. shocked t77 dehydration, DTA, infrared spectra 1094 Acmite, Ti-, phase relations of 536 Almandine Actinolite overgrowth by grossularite- spessartine 558 coexisting with hoinblende 529 in netamorphic rocks, optical Arnerican Crystallographic Association, properties 22 abstracts, Spring neeting,1974 1L27 Activity coefficients Amphiboles of coexisting pyroxenes 204 actinolite 2? 529 Al -Ca-anphibole ADMS, HERBERTG. 22 compositions 22 with L.H. Cohen, and W. Klenent, Jr.; coordination polyhedra M High-low quartz inversion : Thermal of site atons in I 083 analysis studies to 7 kbar I 099 hornblende L, 22, 529, 604 ADAMS,JOHN W. magnesioarfvedsonite (authigenic) 830 with T. Botinelly, W.N. Sharp, and refraction indices 22 K. Robinson; Murataite, a new richterite, Mg-Fe- 518 conplex oxide from E1 Paso County, AMSTUTZ,G.C. Colorado L72 with A.J. Bernard, Eds., )nes in Errata 640 Sediments; reviewed by P.B. Barton 881 Aenigmatite ANDERSEN,C.A. in volcanic conplex, composition, and X-ray data Micz,opnobeAnalysis; reviewed by A.E.
    [Show full text]
  • Pdf/14/3/387/3420048/387.Pdf by Guest on 30 September 2021 388 TTIE CANADIAN MINERALOGIST
    Canadian Mineraloslst Vol. 14, pp. 387-390 (197Q ZEMANNITE,A ZINGTETLURITE FROM MOCTEZUMA, SONORA, MEXICO J. A. MANDARINO Department of Mineralogy and Geology, Royal Ontario Museum, L00 Qaeeds Park, Toronto, Ontario, Canada E. MATZAT Mineraloglsch-krlstallographisches Institut, University of Gdttingen, Gdttlngen, Gennany S. J. WILLIAMS Pera State College, Pera, Nebraska, U,S-4. ABSIRAG"I fesseurJosef Zemann,de I'Universit6 de Vienne, qui a contribu6 tellement i nos connaissancesdes struc- Zemannite occurs as minute hexagonal prisms tures des compos6sde tellure. terminated by a bipyramid. The mineral is light Clraduit par le journal) to dark brown, has an adamantine lustre, and is brittle. It is uniaxial positive: <o-1.85, e:1.93. The density is greater than 4.05 g/cm3, probably about INtnopucficyt* gave 4.36 g/cma. Crystal structure study the fol- Zemannite was first recognized as a possible group P6s/m, a 9.4t!0,42, c 7.64! lowing: space new species by Mandarino & Williams (1961) tellurite 0.024, Z:2. Zemannite is a zeolite-like who referred to it as a zinc tellurite or tellurate. with a negatively charged framework of lZtu Problems involving the determination of the GeOrLl having large (diam. : 8.28A) open chan- nels parallel to [0001]. These channels are statis- chemical formula delayed submission of the tically occupied by Na and H ions and possibly by description to the Commission on New Minerals H:O. Some Fe substitutes f.or 7m, Partial analyses Names, I.M.A. After the structural determina- and the crystal structure analysis indicate the for- tion by Matzat (1967), the description of zeman- mula (Zn,Fe)2(feOs)sNafir-']HzO.
    [Show full text]
  • Utahite, a New Mineral and Associated Copper Tellurates from the Centennial Eureka Mine, Tintic District, Juab County, Utah
    UTAHITE, A NEW MINERAL AND ASSOCIATED COPPER TELLURATES FROM THE CENTENNIAL EUREKA MINE, TINTIC DISTRICT, JUAB COUNTY, UTAH Andrew C. Roberts and John A. R. Stirling Geological Survey of Canada 601 Booth Street Ottawa, Ontario, Canada K IA OE8 Alan J. Criddle Martin C. Jensen Elizabeth A. Moffatt Department of Mineralogy 121-2855 Idlewild Drive Canadian Conservation Institute The Natural History Museum Reno, Nevada 89509 1030 Innes Road Cromwell Road Ottawa, Ontario, Canada K IA OM5 London, England SW7 5BD Wendell E. Wilson Mineralogical Record 4631 Paseo Tubutama Tucson, Arizona 85750 ABSTRACT Utahite, idealized as CusZn;(Te6+04JiOH)8·7Hp, is triclinic, fracture. Utahite is vitreous, brittle and nonfluorescent; hardness space-group choices P 1 or P 1, with refined unit-cell parameters (Mohs) 4-5; calculated density 5.33 gtcm' (for empirical formula), from powder data: a = 8.794(4), b = 9996(2), c = 5.660(2);\, a = 5.34 glcm' (for idealized formula). In polished section, utahite is 104.10(2)°, f3 = 90.07(5)°, y= 96.34(3YO, V = 479.4(3) ;\3, a:b:c = slightly bireflectant and nonpleochroic. 1n reflected plane-polar- 0.8798:1 :0.5662, Z = 1. The strongest five reflections in the X-ray ized light in air it is very pale brown, with ubiquitous pale emerald- powder pattern are (dA(f)(hkl)]: 9.638(100)(010); 8.736(50)(100); green internal reflections. The anisotropy is unknown because it is 4.841(100)(020); 2.747(60)(002); 2.600(45)(301, 311). The min- masked by the internal reflections. Averaged electron-microprobe eral is an extremely rare constituent on the dumps of the Centen- analyses yielded CuO = 25.76, ZnO = 15.81, Te03 = 45.47, H20 nial Eureka mine, Tintic district, Juab County, Utah, where it (by difference) {12.96], total = {100.00] weight %, corresponding occurs both as isolated 0.6-mm clusters of tightly bound aggre- to CU49;Zn29lTe6+04)39l0H)79s' 7.1H20, based on 0 = 31.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Thirty-Seventh List of New Mineral Names. Part 1" A-L
    Thirty-seventh list of new mineral names. Part 1" A-L A. M. CLARK Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK AND V. D. C. DALTRYt Department of Geology and Mineralogy, University of Natal, Private Bag XO1, Scottsville, Pietermaritzburg 3209, South Africa THE present list is divided into two sections; the pegmatites at Mount Alluaiv, Lovozero section M-Z will follow in the next issue. Those Complex, Kola Peninsula, Russia. names representing valid species, accredited by the Na19(Ca,Mn)6(Ti,Nb)3Si26074C1.H20. Trigonal, IMA Commission on New Minerals and Mineral space group R3m, a 14.046, c 60.60 A, Z = 6. Names, are shown in bold type. Dmeas' 2.76, Dc~ac. 2.78 g/cm3, co 1.618, ~ 1.626. Named for the locality. Abenakiite-(Ce). A.M. McDonald, G.Y. Chat and Altisite. A.P. Khomyakov, G.N. Nechelyustov, G. J.D. Grice. 1994. Can. Min. 32, 843. Poudrette Ferraris and G. Ivalgi, 1994. Zap. Vses. Min. Quarry, Mont Saint-Hilaire, Quebec, Canada. Obschch., 123, 82 [Russian]. Frpm peralkaline Na26REE(SiO3)6(P04)6(C03)6(S02)O. Trigonal, pegmatites at Oleny Stream, SE Khibina alkaline a 16.018, c 19.761 A, Z = 3. Named after the massif, Kola Peninsula, Russia. Monoclinic, a Abenaki Indian tribe. 10.37, b 16.32, c 9.16 ,~, l~ 105.6 ~ Z= 2. Named Abswurmbachite. T. Reinecke, E. Tillmanns and for the chemical elements A1, Ti and Si. H.-J. Bernhardt, 1991. Neues Jahrb. Min. Abh., Ankangite. M. Xiong, Z.-S.
    [Show full text]
  • Demesmaekerite Pb2cu5(UO2)2(Se O3)6(OH)6 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1
    4+ Demesmaekerite Pb2Cu5(UO2)2(Se O3)6(OH)6 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Crystals are elongated along [001] and flattened on {100} or {010}, with dominant {100} and {010}, secondary faces typically striated k [101], to 1 cm; in radial aggregates. Physical Properties: Hardness = 3–4 D(meas.) = 5.28(4) D(calc.) = 5.42 Radioactive. Optical Properties: Translucent to opaque. Color: Bottle-green to pale olive-green, becoming brownish green with dehydration. Optical Class: Biaxial (+). Pleochroism: X 0 = yellow-green; Y 0 = brown. α = 1.835(5) (α 0) β = n.d. γ = 1.910(5) (γ 0) 2V(meas.) = n.d. Cell Data: Space Group: P 1. a = 11.955(5) b = 10.039(4) c = 5.639(2) α =89.78(4)◦ β = 100.36(4)◦ γ =91.34(4)◦ Z=1 X-ray Powder Pattern: Musonoi mine, Congo. 2.97 (FFF), 5.42 (FF), 5.89 (F), 3.34 (F), 5.14 (mF), 4.72 (mF), 4.67 (mF) Chemistry: (1) (2) SeO2 30.9 30.65 UO3 27.6 26.34 PbO 19.4 20.55 CuO 18.2 18.31 H2O 4.2 4.15 Total 100.3 100.00 (1) Musonoi mine, Congo; H2O by the Penfield method; corresponds to Pb1.87Cu4.93(UO2)2.08 • • (SeO3)6(OH)6.04 2H2O. (2) Pb2Cu5(UO2)2(SeO3)6(OH)6 2H2O. Occurrence: Rare in the lower oxidized portions of a selenium-bearing Cu–Co deposit. Association: Cuprosklodowskite, kasolite, guilleminite, derriksite, chalcomenite, malachite, selenian digenite.
    [Show full text]
  • Raman Spectroscopic Study of the Tellurite Minerals: Carlfriesite and Spirof- fite
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Dickfos, Marilla,& Keeffe, Eloise (2009) Raman spectroscopic study of the tellurite minerals: Carlfriesite and spirof- fite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1663-1666. This file was downloaded from: https://eprints.qut.edu.au/17256/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.014 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Dickfos, Marilla J. and Keeffe, Eloise C. (2009) Raman spectroscopic study of the tellurite minerals : carlfriesite and spiroffite. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 71(5). pp. 1663-1666. © Copyright 2009 Elsevier Raman spectroscopic study of the tellurite minerals: carlfriesite and spiroffite Ray L. Frost, • Marilla J. Dickfos and Eloise C. Keeffe Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. ---------------------------------------------------------------------------------------------------------------------------- Abstract Raman spectroscopy has been used to study the tellurite minerals spiroffite 2+ and carlfriesite, which are minerals of formula type A2(X3O8) where A is Ca for the mineral carlfriesite and is Zn2+ and Mn2+ for the mineral spiroffite.
    [Show full text]
  • Vibrational Spectroscopic Study of the Uranyl Selenite Mineral Derriksite
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117 (2014) 473–477 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa Vibrational spectroscopic study of the uranyl selenite mineral derriksite Cu4UO2(SeO3)2(OH)6ÁH2O ⇑ Ray L. Frost a, , JirˇíCˇejka b, Ricardo Scholz c, Andrés López a, Frederick L. Theiss a, Yunfei Xi a a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia b National Museum, Václavské námeˇstí 68, CZ-115 79 Praha 1, Czech Republic c Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil highlights graphical abstract We have studied the mineral derriksite Cu4UO2(SeO3)2(OH)6ÁH2O. A comparison was made with the other uranyl selenites. Namely demesmaekerite, marthozite, larisaite, haynesite and piretite. Approximate U–O bond lengths in uranyl and O–HÁÁÁO hydrogen bond lengths were calculated. article info abstract Article history: Raman spectrum of the mineral derriksite Cu4UO2(SeO3)2(OH)6ÁH2O was studied and complemented by Received 20 May 2013 the infrared spectrum of this mineral. Both spectra were interpreted and partly compared with the spec- Received in revised form 29 July 2013 tra of demesmaekerite, marthozite, larisaite, haynesite and piretite. Observed Raman and infrared bands Accepted 2 August 2013 were attributed to the (UO )2+, (SeO )2À, (OH)À and H O vibrations. The presence of symmetrically dis- Available online 22 August 2013 2 3 2 tinct hydrogen bonded molecule of water of crystallization and hydrogen bonded symmetrically distinct hydroxyl ions was inferred from the spectra in the derriksite unit cell.
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]