A New Mineral from Poзos De Caldas, Minas Gerais
Total Page:16
File Type:pdf, Size:1020Kb
Ñïèñîê ëèòåðàòóðû Ïåêîâ È. Â., Âèíîãðàäîâà Ð. À., ×óêàíîâ Í. Â., Êóëèêîâà È. Ì. Î ìàãíåçèàëüíûõ è êîáàëüòîâûõ àð- ñåíàòàõ ãðóïï ôàéðôèëäèòà è ðîçåëèòà / ÇÂÌÎ. 2001. ¹ 4. Ñ. 10—23. 4+ Burns P. C., Clark C. M., Gault R. A. Juabite, CaCu10(Te O3)4(AsO4)4(OH)2(H2O)4: crystal structure and revision of the chemical formula / Canad. Miner. 2000a. Vol. 38. P. 823—830. Burns P. C., Pluth J. J., Smith J. V., Eng P., Steele I., Housley R. M. Quetzalcoatlite: A new octahed- ral-tetrahedral structure from a 2 % 2 % 40 ìm3 crystal at the Advances Photon Source-GSE-CARS Facility / Amer. Miner. 2000b. Vol. 85. P. 604—607. 4+ 6+ Frost R. L., Keefe E. C. Raman spectroscopic study of kuranakhite PbMn Te O6 — a rare tellurate mi- neral / J. Raman Spectroscopy. 2009. Vol. 40(3). P. 249—252. Grice J. D., Roberts A. C. Frankhawthorneite, a unique HCP framework structure of a cupric tellurate / Canad. Miner. 1995. Vol. 33. P. 823—830. Lam A. E., Groat L. A., Ercit T. S. The crystal structure of dugganite, Pb3Zn3TeAs2O14 / Canad. Miner. 1998. Vol. 36. P. 823—830. Mandarino J. A. The Gladstone—Dale relationship: Part IV. The compatibility concept and its applicati- on / Canad. Miner. 1981. Vol. 19. P. 441—450. Pekov I. V., Jensen M. C., Roberts A. C., Nikischer A. J. A new mineral from an old locality: eurekadum- pite takes seventeen years to characterize / Mineral News. 2010. Vol. 26(2). P. 1—3. Pertlik F. Der Strukturtyp von Emmonsit, {Fe2(TeO3)3$H2O}$xH2O(x = 0—1) / Tschermaks Miner. Petrog. Mitt. 1972. Vol. 18. P. 157—168. Roberts A., Stirling J. A. R., Criddle A. J., Jensen M. C., Moffatt E. A., Wiulson W. E. Utahite, a new mi- neral and associated copper tellurates from the Centennial Eureka mine, Tintic district, Juab County, Utah / Miner. Record. 1997. Vol. 27. P. 175—179. Roberts A. C. An orthorhombic cell for tlalocite / Geol. Surv. Can. 1978. Paper 78—1C. P. 104. Shannon R. D., Prewitt C. T. Effective ionic radii in oxides and fluorides / Acta Cryst. 1969. C25. P. 925—945. Williams S. Quetzalcoatlite, Cu4Zn8(TeO3)3(OH)18, a new mineral from Moctezuma, Sonora / Miner. Mag. 1973. Vol. 39. P. 261—263. Williams S. Xocomecatlite, Cu3TeO4(OH)18, and tlalocite, Cu10Zn6(TeO3)(TeO4)2Cl(OH)25$27H2O, two new minerals from Moctezuma, Sonora, Mexico / Miner. Mag. 1975. Vol. 40./ P. 221—226. Ïîñòóïèëà â ðåäàêöèþ 26 ôåâðàëÿ 2010 ã. ÓÄÊ 549.657+548.6 ÇÐÌÎ, ¹ 4, 2010 ã. Zapiski RMO, N 4, 2010 S. F. NOMURA,* D. ATENCIO,* N. V. CHUKANOV,** R. K. RASTSVETAEVA,*** J. M. V. COUTINHO,* T. K. KARIPIDIS*** MANGANOEUDIALYTE — A NEW MINERAL FROM POÇOS DE CALDAS, MINAS GERAIS, BRAZIL * Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080, São Paulo, SP, Brazil; e-mail: [email protected] ** Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow Oblast, Russia *** Institute of Crystallography, Russian Academy of Sciences, Leninskii Prospeñt 59, Moscow 119333, Russia Manganoeudialyte, ideally Na14Ca6Mn3Zr3[Si26O72(OH)2]Cl2$4H2O, is a new mineral from a khibini- te from the northern edge («Anel Norte») of the alkaline Poços de Caldas massif, Minas Gerais, Brazil. The new mineral species has been approved by the CNMNC (IMA 2009-039). Key words: manganoeudialyte, new mineral, eudialyte-group minerals, crystal structure, Poços de Caldas, Minas Gerais, Brazil. © Ñ. Ô. ÍÎÌÓÐÀ, Ä. ÀÒÅÍÑÈÎ, ä. ÷ë. Í. Â. ×ÓÊÀÍÎÂ, ä. ÷ë. Ð. Ê. ÐÀÑÖÂÅÒÀÅÂÀ, Æ. Ì. Â. ÊÎÓÒÈÍÜÎ, Ò. Ê. ÊÀÐÈÏÈÄÈÑ. ÌÀÍÃÀÍÎÝÂÄÈÀËÈÒ — ÍÎÂÛÉ ÌÈÍÅÐÀË ÈÇ ÌÀÑÑÈÂÀ ÏÎÑÎÑ ÄÅ ÊÀËÜÄÀÑ, ÌÈÍÀÑ ÆÅÐÀÈÑ, ÁÐÀÇÈËÈß Íîâûé ìèíåðàë ìàíãàíîýâäèàëèò Na14Ca6Mn3Zr3[Si26O72(OH)2]Cl2$4H2O îáíàðóæåí â ñîñòàâå õèáèíèòà èç ñåâåðíîé ÷àñòè ùåëî÷íîãî ìàññèâà Ïîñîñ äå Êàëüäàñ (Ìèíàñ Æåðàèñ, Áðàçèëèÿ) â 35 âèäå àãðåãàòîâ (ðàçìåðîì äî 1 ñì) ðîçîâûõ äî ïóðïóðíûõ çåðåí â èíòåðñòèöèÿõ ìåæäó èíäèâèäàìè ãëàâíûõ ìèíåðàëîâ ïîðîäû, â àññîöèàöèè ñ ýâäèàëèòîì, êàëèåâûì ïîëåâûì øïàòîì, íåôåëèíîì, ýãèðèíîì, àíàëüöèìîì, ñîäàëèòîì, ðèíêèòîì, ëàìïðîôèëëèòîì, àñòðîôèëëèòîì, òèòàíèòîì, ôëþî- ðèòîì è êàíêðèíèòîì. Íîâûé ìèíåðàë ïðîçðà÷íûé äî ïðîñâå÷èâàþùåãî, â ÓÔ ëó÷àõ íå ëþìèíåñ- öèðóåò; õðóïêèé, òâåðäîñòü ïî øêàëå Ìîîñà îò 5 äî 6. Èçìåðåííàÿ ïëîòíîñòü — 2.890 ã/ñì3, âû÷èñ- 3 ëåííàÿ — 2.935 ã/ñì . Ìàíãàíîýâäèàëèò îïòè÷åñêè îäíîîñíûé (+), no = 1.603(2), ne = 1.608(2) (äëÿ áåëîãî ñâåòà). Ïëåîõðîèçì íå ïðîÿâëÿåòñÿ. Õèìè÷åñêèé ñîñòàâ (ìèêðîçîíä, âîäà îïðåäåëåíà ìåòî- äîì Ïåíôèëäà, ìàñ. %): Na2O 12.01, K2O 0.59, CaO 10.70, MnO 3.51, SrO 3.00, FeO 2.72, Al2O3 0.41, La2O3 0.15, Ce2O3 0.12, SiO2 48.70, TiO20.47, ZrO2 12.08, Nb2O5 1.21, HfO2 0.25, F 0.08, Cl 0.99, H2O 3.5, -Oß(Cl,F) –0.26; ñóììà 100.23. Ýìïèðè÷åñêàÿ ôîðìóëà, ðàññ÷èòàííàÿ íà Si + Al + Zr + Ti + + Hf + Nb = 29: H12.08Na12.05Sr0.90K0.39La0.03Ce0.02Ca5.93 (Mn1.54Fe1.18)Zr3.03Nb0.28Al0.25Hf0.04Ti0.18$ Si25.20O79.40Cl0.87F0.13. Êðèñòàëëè÷åñêàÿ ñòðóêòóðà èçó÷åíà ìîíîêðèñòàëüíûì ìåòîäîì (R = 0.033). Ìèíåðàë òðèãîíàëüíûé, ïð. ãð. R3m; a = 14.2418(1), c = 30.1143(3) Å, V = 5289.7(1) Å3, Z = 3. Ìàð- ãàíåö çàñåëÿåò èñêàæåííûé îêòàýäð [MnO4(H2O)2]. Êðèñòàëëîõèìè÷åñêàÿ ôîðìóëà ìàíãàíî- VI V V IV VI ýâäèàëèò: [Na11.93Sr0.81(H3O)0.70K0.39Ce0.07]Ó13.90[Ca6][ Mn1.56 Fe1.20 Na0.24]Ó3.00[Zr3][ (Si0.38Al0.25) IV VI (Nb0.29Zr0.08)]Ó1.00[ Si0.81 Ti0.19]Ó1.00[Si24O72][(OH)2]$[(H2O)3.55Cl0.88(OH)0.84O0.40F0.13]Ó5.80. Ñèëüíûå ëèíèè ïîðîøêîâîé ðåíòãåíîãðàììû [d, Å (I,%)(hkl)]: 6.421 (37) (104), 4.329 (30) (205), 3.526 (46) (027), 3.218 (100), 3.023 (25) (042), 1.609 (77) (4.1.15), 1.605 (41) (4.0.16). ÈÊ-ñïåêòð ñîäåðæèò ïîëî- –1 2+O –1 ñû ìîëåêóë âîäû äâóõ òèïîâ (ïðè 1620 è 1677 ñì ) è ïîëèýäðîâ (Fe 5) (ïðò 529 ñì ). Ìèíåðàë óòâåðæäåí ÊÍÌÍÌ ÌÌÀ (IMA No. 2009-039). Êëþ÷åâûå ñëîâà: ìàíãàíîýâäèàëèò, íîâûé ìèíåðàë, ìèíåðàëû ãðóïïû ýâäèàëèòà, êðèñòàëëè÷å- ñêàÿ ñòðóêòóðà, Ïîñîñ äå Êàëüäàñ, Ìèíàñ Æåðàèñ, Áðàçèëèÿ. INTRODUCTION Manganoeudialyte, ideally Na14Ca6Mn3Zr3[Si26O72(OH)2]Cl2·4H2O, has been approved by the CNMNC (IMA 2009-039). The mineral is the Mn-analogue of eudialyte and is named following the nomenclature of eudialyte-group minerals (Johnsen et al., 2003). It may be classified in the Strunz and Nickel (2001) class 9.CO. Type material is deposited in the Mu- seu de Geociências, Instituto de Geociências, Universidade de São Paulo, São Paulo, SP, Brazil (http://www2.igc.usp.br/museu/), specimen number DR704. Eudialyte-group minerals are Na-rich zirconosilicateswith varying amounts of the speci- 2+ 2+ 3+ 2+ 3+ 2+ + 4+ 5+ 6+ + es-determining cations Ca ,Fe ,Fe ,Mn , REE ,Sr ,K ,Ti ,Nb ,W and H3O ,wa- – – – 2– 2– ter molecules, and additional anions Cl ,F,OH, CO3 , SO4 . Their general formula (John- $ sen et al., 2003) can be written as N(1)3N(2)3N(3)3N(4)3N(5)3M(1)6M(2)3—6M(3)M(4) d Å d Å d Å Z3[Si24O72]O’4—6X2. They are trigonal, a 14 , c 30 (rarely 60 ), crystallizing in R3m, R3m or R3. Eudialyte-group minerals belong to the large family of alkaline silicates with heteropolyhedral frameworks. A framework consisting of SiO4 tetrahedra and MO6 oc- tahedra (where M is usually Ti, Nb, or Zr) is a specific structure feature of these minerals (Chukanov and Pekov, 2005). Lately, the number of minerals in this group has increased rapidly and is now 25 (inclu- ding manganoeudialyte). Most of them are reported in Rastsvetaeva (2007). Eudialyte s.l. was reported in the rocks of the Poços de Caldas alkaline massif, Minas Gerais, Brazil, by Guimarães (1948) and Ulbrich and Ulbrich (1992). Microprobe analyses were obtained by Gualda and Vlach (1996) and Johnsen and Gault (1997). On the basis of optical data, Gualda and Vlach (1996) classified one specimen as «eudialyte» (uniaxial positive), another one as «mesodialyte» (optically isotropic), and two specimens as «eucolite» (uniaxial negative). Johnsen et al. (1997) showed that the terms «mesodialyte» and «eucolite» are meaningless. Following the sequence of steps defined by Johnsen and Grice (1999), the eudialyte group minerals from Poços de Caldas are classified as eudialyte (sensu stricto) [either the «eudialy- te» or the «mesodialyte» of Gualda and Vlach (1996), and the Poços de Caldas specimen studied by Johnsen and Gault (1997)], kentbrooksite [one «eucolite» studied by Gualda and Vlach (1996)], and ferrokentbrooksite [the other «eucolite» of Gualda and Vlach (1996)] (Atencio et al., 2000). 36 OCCURRENCE The new eudialyte-group mineral manganoeudialyte occurs in a khibinite, at the nor- thern edge («Anel Norte») of the Upper Cretaceous alkaline Pocos de Caldas massif, a circu- lar intrusion of almost 800 km2, Minas Gerais, Brazil. Emplaced in Precambrian basement rocks and Jurassic sandstones, the intrusion consists of tinguaite, phonolite, nepheline syeni- te, phonolitic lavas, volcanoclastics, lujavrite and khibinite. Hydrothermal alteration and ore deposition have occurred in all rock types, with emphasis on the inner tinguaite and nepheli- ne syenite. Two small lujavrite-khibinite bodies, an eastern and a western one, are exposed at the northern edge of the alkaline Poços de Caldas massif, southeastern Brazil. Detailed mapping reveals at the center of the better exposed western body a coarse-grained, mesocratic, gneis- sic-looking eudialyte-nepheline syenite (lujavrite) with a strong subhorizontal foliation, showing at the contacts a finer-grained border facies. Two trachytoid nepheline syenite ty- pes occur as an envelope to the central lujavrites, followed by an outer shell of coarse-grain- ed eudialyte-nepheline syenite. The internal structure of both bodies is that of a saucer, with successive foliated shells (in part absent in the eastern body), with rather steep dips at the contacts between the different fades; all are surrounded by the outer nepheline syenite.