On the Occasion of His 80Th Anniversary)

Total Page:16

File Type:pdf, Size:1020Kb

On the Occasion of His 80Th Anniversary) Crystallography Reports, Vol. 46, No. 4, 2001, pp. 521–522. Translated from Kristallografiya, Vol. 46, No. 4, 2001, pp. 583–584. Original Russian Text Copyright © 2001 by the Editorial Board. In Memory of Boris Konstantinovich Vainshtein (on the Occasion of His 80th Anniversary) On July 10, 2001, Boris Konstantinovich Vainsh- In 1945, Vainshtein entered the postgraduate course tein, an outstanding physicist–crystallographer and of the Institute of Crystallography and was bound for- member of the Russian Academy of Sciences, would ever with this institute. In 1950, he defended his Candi- have celebrated his eightieth birthday. date and, in 1955, Doctoral dissertations in physics and mathematics. In 1959, he organized and headed the Academician Vainshtein, an outstanding scientist Laboratory of Protein Structure. In 1962, Vainshtein and a remarkable person, has made a great contribution was elected a Corresponding Member and, in 1976, a to the creation and development of modern crystallog- Full Member of the USSR Academy of Sciences. raphy. He was a talented organizer of science and the Being appointed the director of the Institute of Crys- director of the Shubnikov Institute of Crystallography tallography in 1962, Vainshtein continued the scientific for more than 34 years. traditions laid by A.V. Shubnikov and developed crys- Boris Konstantinovich Vainshtein was born in Mos- tallography as a science combining studies along three cow in 1921. He graduated with distinction from two main integral parts—crystal growth, crystal structure, higher schools—the Physics Faculty of Moscow State and crystal properties. The great organizational talent University (1945) and the Metallurgy Faculty of the characteristic of Vainshtein flourished during his direc- Moscow Institute of Steel and Alloys (1947) and torship—he managed to gather around him people received a diploma as a physicist and an engineer- devoted to science and transformed the Institute of researcher. Crystallography into unique scientific center well known throughout the world. Vainshtein’s natural gifts and manysidedness was The first studies performed by Vainshtein were ded- revealed even in his student years. He was a brilliant icated to electron diffraction. He was the first to use the student, deeply interested in physics, mathematics, and Fourier analysis of the electrostatic potential and literature; he also painted, wrote verses, edited a news- derived the basic formulas of the electron diffraction paper, and played chess. structure analysis; he was also the first to determine the 1063-7745/01/4604-0521 $21.00 © 2001 MAIK “Nauka/Interperiodica” 522 IN MEMORY OF BORIS KONSTANTINOVICH VAINSHTEIN positions of light hydrogen atoms in a number of struc- other international conferences, seminars, and meet- tures. Later, Vainshtein also solved many problems of ings. Vainshtein was the chairman of the Organizing the theory of X-ray diffraction analysis, which allowed Committee of the Seventh International Congress and him to start studying and successfully solve the struc- Symposium organized by the International Union of ture of a number of complicated objects—various Crystallography (IUCr) in Moscow in 1966. For a num- amino acids, peptides, and complicated natural ber of years, he was a member of the Executive Com- biopolymers–proteins. Vainshtein and his coworkers mittee and the vice president of the International Union determined the structures of synthetic polypeptides and of Crystallography of the IUCr. some amino acids. He also made an important contribu- Vainshtein’s scientific and organizational achieve- tion to the theory of X-ray diffraction from polymer ments were highly estimated and he was awarded high molecules and liquid crystals. Analyzing structures of governmental decorations: the Order of Lenin, the biocrystals, he also widely used electron microscopy, Order of the October Revolution, two Orders of the Red developed the direct method of three-dimensional Banner of Labor, the Order for Merits before Russia, reconstruction of the structure, and applied it to struc- and many medals. ture determination of protein molecules and bacte- riophages. Vainshtein and his colleagues have studied Vainshtein scientific work brought him numerous the three-dimensional structures of more than twenty of decorations and honorary degrees, including the high- the most complicated active compounds, antibiotics, est national and international crystallographic proteins, and viruses. awards—the Fedorov and the Ewald prize and medals. He was elected a member of many foreign scientific Boris Konstantinovich Vainshtein is the author of societies and institutions. He was a member of the more than 400 scientific articles, reviews, and mono- Leopoldina Academy in Germany, a foreign member of graphs. His well-known monographs Structure Analy- the Polish Academy of Sciences, a corresponding sis by Electron Diffraction (1956) and Diffraction of member of the Academy of Sciences and Arts of Barce- X-rays by Chain Molecules (1963) were soon translated lona, a member of the New York Academy of Sciences, into English. One of his last works was the four-volume a doctor Honoris Causa of Stockholm University, a Modern Crystallography (1994) written by his initia- doctor of science of the University of Keele, an honor- tive, with his active participation as an author and edi- ary doctor of the University of York, an honorary mem- tor, which was also immediately translated into ber of the Roland Eótvós Physical Society of Hungary, English. and an associate fellow of the Catalonian Institute of Sciences. Vainshtein published a series of articles on the most general problems of crystallography, which included In Vainshtein’s directorship, scientific activity the relation of crystallography to the adjacent fields of always prevailed over administrative activity. Penetrat- the knowledge, the place of crystallography among ing into the crux of the problems solved at the institute, other sciences, the relation and mutual influence of he determined the main directions in the activity of all both fundamental and applied crystallography. Vainsh- the laboratories. Vainshtein always stimulated and sup- tein was also the editor of crystallographic articles in ported new researches. the Large Soviet Encyclopedia and himself wrote many The name of Vainshtein will always remain in the articles for this edition. He was the editor-in-chief of history of the Russian and world crystallography. The the journal Kristallografiya (Crystallography Reports) best tribute to Vainshtein as a scientist and an organizer and the member of the editorial boards of various Rus- of science would be new achievements of Russian crys- sian and foreign journals. tallography and, first of all, of the Institute of Crystal- lography, where he had worked for more than 50 years For many years, Vainshtein had been the recognized and headed for almost 35 years. leader in crystallography in our country. Being the assistant academician–secretary of the Department of This issue of Kristallografiya (Crystallography General Physics and Astronomy of the USSR (Russian) Reports) is dedicated to the memory of Vainshtein and Academy of Sciences and the chairman of the Councils is comprised of articles presented by the scientists from on Physics of Crystals and Electron Microscopy, he the Institute of Crystallography and, thus, reflects the coordinated all the studies performed in these fields in major directions of the present research at this institute. our country. Some other articles dedicated to the memory of The many-sided scientific activity of Vainshtein had Vainshtein will also be published in the next issue. won him the worldwide recognition. Since 1957, Vain- shtein had participated in all the Congresses of the International Union of Crystallography and in many Translated by L. Man CRYSTALLOGRAPHY REPORTS Vol. 46 No. 4 2001 Crystallography Reports, Vol. 46, No. 4, 2001, p. 523. Translated from Kristallografiya, Vol. 46, No. 4, 2001, pp. 585–586. Original Russian Text Copyright © 2001 by Kovalchuk. To the Memory of Academician Vainshtein It has now been five years that Boris Konstantinovich condensed matter (including the X-ray diffraction anal- left us, a period sufficient for letting go of the charisma ysis of proteins, small-angle scattering, electron of this great man and to make an attempt to estimate microscopy, X-ray diffractometry, topography, etc.); objectively the influence of his personality, ideas, and and new technologies for growing new crystals that had deeds on the development of modern crystallography. no natural analogues such as lasing crystals. Boris Konstantinovich Vainshtein won world recog- nition in his own lifetime. His famous monographs are It is important that Vainshtein, who created and in constant use in those research laboratories all over developed new fields of the crystallographic science, the world which apply the diffraction methods and also cared about and efficiently used the scientific study the structure of condensed matter of any nature. potential of the Institute of Crystallography that he A great poet once said that the places where once a inherited from Shubnikov. great man lived remain sacred even after a thousand Today, being a unique physical institute possessing years. Such a sacred place for Vainshtein himself had the culture and the basis for studying biological and always been the Institute of Crystallography of the Rus- organic objects, the unique set of physical and, first of sian Academy of Sciences, which he
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Newsletter June 2006
    w NEWSLETTER INTERNATIONAL TUNGSTEN INDUSTRY ASSOCIATION Rue Père Eudore Devroye 245, 1150 Brussels, Belgium Tel: +32 2 770 8878 Fax: + 32 2 770 8898 E-mail: [email protected] Web: www.itia.info The programme will begin on Tuesday Toxicologic Assessment for the Production and 19th evening with a Reception in the hotel jointly Mechanical Processing of Materials containing hosted by Tiberon Minerals and ITIA. Tungsten Heavy Metal. Not least will be an introduction to the formation of a Consortium to deal Working sessions will be held on Wednesday Annual with the implications of REACH on behalf of the and Thursday mornings and papers will tungsten industry, both legal and financial. include: General Readers will recall that REACH will place an obligation ▼ HSE work programme on individual companies to submit a technical dossier and register any chemical substance Meeting ▼ Ganzhou’s Tungsten Industry and Its Progress manufactured or imported into the EU in quantities ▼ Geostatistics in the mid and long-term planning for of more than 1 tonne. the Panasqueira deposit (Nuno Alves, Beralt Tin Tuesday 26 to and Wolfram) In order to assist companies with the registration process, the Commission recommends the creation ▼ Thursday 28 Paper by Zhuzhou Cemented Carbide of industry Consortia. These Consortia will enable the ▼ Update on Tiberon’s Development of Tungsten joint development, submission and sharing of September 2006 Mining in Vietnam information with the aim of reducing the compliance burden on individual companies and preventing ▼ Update on China’s Tungsten Industry Hyatt Regency Hotel, unnecessary additional animal testing. ▼ Update on US Tungsten Market (Dean Schiller, Boston, USA OsramSylvania Products) Both members and non-members will be equally ▼ Review of Trends in 2006 (Nigel Tunna, Metal-Pages) welcome to join the Consortium, saving themselves considerable amounts of money and time by so doing.
    [Show full text]
  • Minerals of the Eudialyte Group from the Sagasen Larvikite Quarry, Porsgrunn, Norway
    = Minerals of the eudialyte group from the Sagasen larvikite quarry, Porsgrunn, Norway Alf Olav Larsen, Arne Asheim and Robert A. Gault Introduction Eudialyte, aNa-rich zirconosilicate with varying amounts of Ca, Fe, Mn, REE, Nb, K, Y, Ti, CI and F, was first described from the llimaussaq alkaline complex, South Greenland by Stromeyer (1819), Since then, the mineral has been described from many other alkaline deposits, and is a characteristic mineral in agpaitic nepheline syenites and their associated pegmatites. In recent years, eudialyte (sensa lata) has been the subject of extensive studies. The broad compositional variations and new insight into the crystal chemistry of the mineral group resulted in the definition of several new species by the Eudialyte Nomenclature Subcommittee under the Commission on New Minerals and Mineral Names of the International Mineralogical Association (Johnsen et al. 2003b). Brown eudialyte (s. I.) is a common constituent of the agpaitic pegmatites in the Langesundsfjord district in the western part of the Larvik plutonic complex (Br0gger 1890). Recent chemical analyses of the mineral have shown that some localities contain ferrokentbrooksite (Johnsen et al. 2003a). Other localities hold eudialyte (sensa stricto). Ferrokentbrooksite is the ferrous-iron-dominant analogue of kentbrooksite with Fe as the predominant element replacing Mn. Kentbrooksite is the Mn-REE-Nb-F end member in a solid solution series between eudialyte (s. s.) and ferrokentbrooksite, with an extension to oneillite (Johnsen et al. 1998, Johnsen et al. 1999, Johnsen et al. 2003a), as well as to carbokentbrooksite and zirsilite-(Ce) (Khomyakov et al. 2003). Carbokentbrooksite has a significant content of carbonate and Na > REE for the N4 site, while zirsilite-(Ce) has REE > Na (with Ce predominant) for the N4 site.
    [Show full text]
  • 12•12H2o, a New Mineral Species from Mont Saint-Hilaire, Quebec: Description, Structure Determination and Relationship to Benitoite and Wadeite
    747 The Canadian Mineralogist Vol. 43, pp. 747-758 (2005) BOBTRAILLITE, (Na,Ca)13Sr11(Zr,Y,Nb)14Si42B6O132(OH)12•12H2O, A NEW MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC: DESCRIPTION, STRUCTURE DETERMINATION AND RELATIONSHIP TO BENITOITE AND WADEITE ANDREW M. McDONALD§ Department of Earth Sciences, Laurentian University, Sudbury Ontario P3E 2C6, Canada ¶ GEORGE Y. CHAO Ottawa–Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa Ontario K1S 5B6, Canada ABSTRACT Bobtraillite is a new, complex zirconosilicate found in igneous breccias and nepheline syenite pegmatites at the Poudrette quarry, Mont Saint-Hilaire, Quebec. It is associated with a burbankite-group mineral, donnayite-(Y), clinoamphibole, albite, aegirine, pyrrhotite, pyrite, annite, analcime, microcline, a white mica (muscovite?), yellow titanite, clinopyroxene and calcite. Crystals are commonly grey to brown in color, blocky to prismatic, elongate along [001], with a maximum length of 2 mm. It is generally found as isolated single crystals or simple parallel intergrowths with two or three members, rarely in small (<0.1 mm) rosettes. It is transparent with a vitreous luster and a white streak, and is non-luminescent. The Mohs hardness is 5½; no cleavage is evident. It is brittle and has an uneven to conchoidal fracture. The calculated density is 3.16 g/cm3. Bobtraillite is nonpleochroic, uniaxial positive, with ␻ 1.627(1) and ␧ 1.645(1). Seven analyses made on one crystal gave: Na2O 5.62, CaO 1.11, SrO 17.76, BaO 0.40, B2O3 (calc.) 3.38, Y2O3 1.15, SiO2 40.51, ZrO2 25.32, HfO2 0.48, Nb2O5 1.32 and H2O (calc.) 5.25, total 102.30 wt.%, corresponding to (Na11.20Ca1.22)⌺12.42(Sr10.59Ba0.16)⌺10.75 (Zr12.69Y0.63Nb0.61Hf0.14)⌺14.07 Si41.64B6O132(OH)12•12H2O on the basis of 156 anions, or ideally, (Na,Ca)13Sr11(Zr,Y,Nb)14Si42B6O132(OH)12•12H2O.
    [Show full text]
  • Ferrokentbrooksite Na15ca6fe2+ 3Zr3nb(Si25o73)(O, OH, H2O)
    2+ Ferrokentbrooksite Na15Ca6Fe 3Zr3Nb(Si25O73)(O, OH, H2O)3(F, Cl)2 Crystal Data: Hexagonal. Point Group: 3m. As pseudo-octahedral crystals to ~1 cm, that display {00*1}, {10*1}, {01*2}, with minor {02*1} and {11*0}. Physical Properties: Cleavage: None. Fracture: Uneven to conchoidal. Tenacity: Brittle. Hardness = 5-6 D(meas.) = 3.06(3) D(calc.) = 3.06 Optical Properties: Transparent. Color: Reddish brown to red, thin grains exhibit pale rose-orange tints in transmitted light. Streak: White. Luster: Vitreous. Optical Class: Uniaxial (-). ω = 1.6221(3) ε = 1.6186(3) Can be anomalously biaxial with 2V(meas.) = ~5°. Cell Data: Space Group: R3m. a = 14.2099(7) c = 30.067(2) Z = 3 X-ray Powder Pattern: Poudrette quarry, Mont Saint-Hilaire, Rouville County, Quebec, Canada. 2.968 (100), 2.847 (98), 3.391 (51), 5.694 (50), 4.300 (43), 7.104 (38), 3.955 (31) Chemistry: (1) (1) Na2O 11.96 Gd2O3 0.17 K2O 0.44 SiO2 44.70 CaO 7.99 TiO2 0.09 MnO 3.88 ZrO2 11.20 FeO 5.08 HfO2 0.17 SrO 0.45 Nb2O5 2.51 Al2O3 0.11 Ta2O5 0.16 Y2O3 0.58 F 0.40 La2O3 1.51 Cl 0.93 Ce2O3 2.51 H2O [0.35] Nd2O3 0.53 - O = F, Cl 0.38 Sm2O3 0.11 Total 95.45 (1) Poudrette quarry, Mont Saint-Hilaire, Rouville County, Quebec, Canada; average electron microprobe analysis, H2O calculated; corresponding to (Na13.05REE0.99K0.32Ca0.23Sr0.15)Σ=14.74 (Ca4.59Mn1.24Y0.17)Σ=6.00(Fe2.39Mn0.61)Σ=3.00(Zr3.00Ti0.04Hf0.03)Σ=3.07(Nb0.64Si0.23Zr0.07Ta0.02)Σ=0.96(Si24.93 Al0.07)Σ=25.00O73(O,OH,H2O)Σ=2.47[Cl0.89F0.71(OH)0.40]Σ=2.00.
    [Show full text]
  • Khomyakovite and Manganokhomyakovite, Two
    893 TheCanadian Mineralogist Vol. 37,pp. 893-899 (1999) KHOMYAKOVITEAND MANGANOKHOMYAKOVITE, TWO NEW MEMBERS OF THEEUDIALYTE GROUP FROM MONT SAINT.HILAIRE, QUEBEC, CANADA OLE JOHNSEN Geological Museum, University of Copenhagen,Oster Voldgade 5-7, DK-L350 Copenhagen,Denmark ROBERT A. GAULT, JOEL D. GRICE AND T. SCOTT ERCIT Research Division, Canadian Museum of Nature, P O. Box 3143, Station D, Ottawa, Ontario Kl P 6P4, Canaela Aesrnacr Khomyakovite, ideally Nal2Sr3Ca6Fe3Zr3W(Si25O73)(O,OH,H2O)3(OH,Cl)zand manganokhomyakovite, ideally Na12Sr3Ca6N4n3Zr3W(Si25O7r(O,OH,H2O)3(OH,Cl)2are two new members of the eudialyte group from Mont Saint-Hilaire, Quebec. They occur as orange to orange-red,pseudo-octahedral crystals ranging in size from 0.5 mm (khomyakovite) to 5 mm (manganokhomyakovite).Associated minerals include, for khomyakovite: analcime, annite, calcite, natrolite, pyrite, and titanite, and for manganokhomyakovite:aegirine, albite, analcime,annite, cerussite, galena, kupletskite, microcline, molybdenite, natrolite, pyrite, pyrrhotite, sodalite, sphalerite, titanite, wohlerite and zircon. Both minerals are transparentto translucent, with a vitreous luster and white streak They are brittle, with a hardnessof 5-6 (Mohs scale). They have no cleavage,no parting and an uneven fractue. They are uniaxial negative, for khomyakovire: a = 1.62'19(5) and e = I.6254(5), and for manganokhomyakovite: = o -= 1.629(1) and e 1.626(2).They are trigonal, spacegroup R3n. For kho-myakovitg.a 14.2959(8),c 30.084(3) A,V 5324.6('l) A3, and for manganokhomyakovi
    [Show full text]
  • Rhe CANADIAN MINERATOOTST JOURNALOF the MINERALOGICAT ASSOCIATION OFCANADA
    865 BUTLETINDE UASSOCIATION MINERALOGIOUE DUGANADA rHE CANADIAN MINERATOOTST JOURNALOF THE MINERALOGICAT ASSOCIATION OFCANADA Volume37 August1999 Part 4 The Canadian Mineralogist Vol. 37, pp. 865-891(1999) THECRYSTAL CHEMISTRY OF THEEUDIALYTE GROUP OLE JOHNSEN$ Geological Museum, (Jniversity of Copenhagen,@ster Voldgade 5-7, DK-l350 Copenhagen' Denmark JOEL D. GRICE Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottttwa, Ontario KIP 6P4, Canada Aesrnacr Seventeencrystals of eudialyte (se115y lolsi) fliffeing in provenanceand showing a wide range of chemical compositions were chosen for crystal-structue analysii and electron-microprobe analysis, supplementedwith thermogravimetric analysis, infrared analysis, Mdssbauer and optical absorption specuoscopy on selectedsamples. The structure consists of layers of six-membered related ringi of tM(1)Ool octahedri linked togither by tM(2)O,l polyhedra sandwichedbetween two pseudocentrosymmetrically lay-ersof three-memberedand nine-membered silicate rings foming a 2:1 composite layer. The 2: 1 composite layers are cross- linked by Zr in octahedralcoordination and are related to one another in accordancewith the rhombohedral symmetry. This open relatively uniform structur; is filled with [Nad"] polyhedra in which Na may have various coordinations. The silicate network is in composition. The Zr site usually has a small amount of Ti. M(1) is normally occupied mostly by Ca; the main substitutions are Mn, Rtt and Y. In one crystal, more than 507oCa is replaced by Mn and REE, resulting in an ordering in two distinct sires,M(la) (Mn) and M(lb) (Ca + REQ, and the symmetry reducid to R3.M(2) is either a four-fold Fe- dominated site, or a five-fold site, usually Mn-dominated.
    [Show full text]
  • Eudialyte-Group Minerals from the Monte De Trigo Alkaline Suite, Brazil
    DOI: 10.1590/2317-4889201620160075 ARTICLE Eudialyte-group minerals from the Monte de Trigo alkaline suite, Brazil: composition and petrological implications Minerais do grupo da eudialita da suíte alcalina Monte de Trigo, Brasil: composição e implicações petrológicas Gaston Eduardo Enrich Rojas1*, Excelso Ruberti1, Rogério Guitarrari Azzone1, Celso de Barros Gomes1 ABSTRACT: The Monte de Trigo alkaline suite is a SiO2- RESUMO: A suíte alcalina do Monte de Trigo é uma associação sie- undersaturated syenite-gabbroid association from the Serra do nítico-gabroide que pertence à província alcalina da Serra do Mar. Mar alkaline province. Eudialyte-group minerals (EGMs) occur in Minerais do grupo da eudialita (EGMs) ocorrem em um dique de ne- one nepheline microsyenite dyke, associated with aegirine-augite, felina microssienito associados a egirina-augita, wöhlerita, lavenita, wöhlerite, låvenite, magnetite, zircon, titanite, britholite, and magnetita, zircão, titanita, britolita e pirocloro. As principais variações pyrochlore. Major compositional variations include Si (25.09– 25.57 composicionais incluem Si (25,09-25,57 apfu), Nb (0,31-0,76 apfu), apfu), Nb (0.31– 0.76 apfu), Fe (1.40–2.13 apfu), and Mn Fe (1,40-2,13 apfu) e Mn (1,36-2,08 apfu). Os EGMs também contêm (1.36– 2.08 apfu). The EGMs also contain relatively high contents concentrações relativamente altas de Ca (6,13-7,10 apfu), enriquecimen- of Ca (6.13– 7.10 apfu), moderate enrichment of rare earth elements to moderado de elementos terras raras (0,38-0,67 apfu) e concentrações (0.38–0.67 apfu), and a relatively low Na content (11.02–12.28 apfu), relativamente baixas de Na (11,02-12,28 apfu), o que pode ser corre- which can be correlated with their transitional agpaitic assemblage.
    [Show full text]
  • Leaching of Rare Earths from Eudialyte Minerals
    Western Australia School of Mines Leaching of Rare Earths from Eudialyte Minerals Hazel Lim This thesis is presented for the Degree of Doctor of Philosophy of Curtin University June 2019 Abstract Rare earths are critical materials which are valued for their use in advanced and green technology applications. There is currently a preferential demand for heavy rare earths, owing to their significant applications in technological devices. At present, there is a global thrust for supply diversification to reduce dependence on China, the dominant world supplier of these elements. Eudialyte is a minor mineral of zirconium, but it is currently gaining significance as an alternative source of rare earths due to its high content of heavy rare earths. Eudialyte is a complex polymetallic silicate mineral which exists in many chemical and structural variants. These variants can also be texturally classified as large or fine-grained. Huge economic deposits of eudialyte can be found in Russia, Greenland, Canada and Australia. Large-grained eudialyte mineralisations are more common than its counterpart. The conventional method of eudialyte leaching is to use sulfuric acid. In few instances, rare earths are recovered as by-products after the preferential extraction of zirconium . As such, the conditions for the optimal leaching of rare earths, particularly of heavy rare earths from large-grained eudialyte are not known. Also, previous studies on eudialyte leaching were focused only on large-grained eudialyte and thus, there are no known studies on the sulfuric acid leaching of rare earths from finely textured eudialyte. Additionally, the sulfuric acid leaching of eudialyte bears a cost disadvantage owing to the large volume of chemicals needed for leaching and for neutralising effluent acidity on disposal.
    [Show full text]
  • GEUS No 190.Pmd
    G E O L O G Y O F G R E E N L A N D S U R V E Y B U L L E T I N 1 9 0 · 2 0 0 1 The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results Edited by Henning Sørensen Contributions to the mineralogy of Ilímaussaq, no. 100 Anniversary volume with list of minerals GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT 1 Geology of Greenland Survey Bulletin 190 Keywords Agpaite, alkaline, crystallography, Gardar province, geochemistry, hyper-agpaite, Ilímaussaq, mineralogy, nepheline syenite, peral- kaline, Mesoproterozoic, rare-element minerals, South Greenland. Cover Igneous layering in kakortokites in the southern part of the Ilímaussaq alkaline complex, South Greenland. The central part of the photograph shows the uppermost part of the layered kakortokite series and the overlying transitional kakortokites and aegirine lujavrite on Laksefjeld (680 m), the dark mountain in the left middle ground of the photograph. The cliff facing the lake in the right middle ground shows the kakortokite layers + 4 to + 9. The kakortokite in the cliff on the opposite side of the lake is rich in xenoliths of roof rocks of augite syenite and naujaite making the layering less distinct. On the skyline is the mountain ridge Killavaat (‘the comb’), the highest peak 1216 m, which is made up of Proterozoic granite which was baked and hardened at the contact to the intrusive complex. The lake (987 m) in the foreground is intensely blue and clear because it is practically devoid of life.
    [Show full text]
  • A New Mineral from Poзos De Caldas, Minas Gerais
    Ñïèñîê ëèòåðàòóðû Ïåêîâ È. Â., Âèíîãðàäîâà Ð. À., ×óêàíîâ Í. Â., Êóëèêîâà È. Ì. Î ìàãíåçèàëüíûõ è êîáàëüòîâûõ àð- ñåíàòàõ ãðóïï ôàéðôèëäèòà è ðîçåëèòà / ÇÂÌÎ. 2001. ¹ 4. Ñ. 10—23. 4+ Burns P. C., Clark C. M., Gault R. A. Juabite, CaCu10(Te O3)4(AsO4)4(OH)2(H2O)4: crystal structure and revision of the chemical formula / Canad. Miner. 2000a. Vol. 38. P. 823—830. Burns P. C., Pluth J. J., Smith J. V., Eng P., Steele I., Housley R. M. Quetzalcoatlite: A new octahed- ral-tetrahedral structure from a 2 % 2 % 40 ìm3 crystal at the Advances Photon Source-GSE-CARS Facility / Amer. Miner. 2000b. Vol. 85. P. 604—607. 4+ 6+ Frost R. L., Keefe E. C. Raman spectroscopic study of kuranakhite PbMn Te O6 — a rare tellurate mi- neral / J. Raman Spectroscopy. 2009. Vol. 40(3). P. 249—252. Grice J. D., Roberts A. C. Frankhawthorneite, a unique HCP framework structure of a cupric tellurate / Canad. Miner. 1995. Vol. 33. P. 823—830. Lam A. E., Groat L. A., Ercit T. S. The crystal structure of dugganite, Pb3Zn3TeAs2O14 / Canad. Miner. 1998. Vol. 36. P. 823—830. Mandarino J. A. The Gladstone—Dale relationship: Part IV. The compatibility concept and its applicati- on / Canad. Miner. 1981. Vol. 19. P. 441—450. Pekov I. V., Jensen M. C., Roberts A. C., Nikischer A. J. A new mineral from an old locality: eurekadum- pite takes seventeen years to characterize / Mineral News. 2010. Vol. 26(2). P. 1—3. Pertlik F. Der Strukturtyp von Emmonsit, {Fe2(TeO3)3$H2O}$xH2O(x = 0—1) / Tschermaks Miner.
    [Show full text]
  • Kentbrooksite from the Kangerdlugssuaq Intrusion, East Greenland, a New Mn-REE-Nb-F End-Member in a Series Within the Eudialyte
    Eur. J. Mineral. 1998,10,207-219 Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F end-member in a series within the eudialyte group: Description and crystal structure OLE JOHNSEN*, JOELD. GRlCE** and ROBERTA. GAULT** * Geological Museum, University of Copenhagen, 0ster Voldgade 5-7, DK-1350 Copenhagen, Denmark e-mail: [email protected] ** Research Division, Canadian Museum of Nature, Ottawa, Ontario KIP 6P4, Canada Abstract: Kentbrooksite, ideally (Na,REE)dCa,REE)6Mn3Zr3NbSi25074F2 . 2H20, is a new mineral from the Kangerdlugssuaq intrusion, East Greenland. The mineral occurs in alkaline pegmatitic bodies cutting pu- laskite rocks and is found as anhedral to subhedral aggregates up to 2 cm. It is transparent, yellow-brown with white streak and vitreous luster. Hardness 5-6, brittle, uneven fracture and no cleavage. It is pyroelectric. Themineral is uniaxial negative, OJ= 1.628(2) and £ = 1.623(2), nonpleochroic. Dmcas= 3.10(4) g/cm3, Deale= 3.08 g/cm3. The mineral is trigonal, space group R3m, a = 14.1686(2), C = 30.0847(4) A, Z = 3. The strongest reflec- tionsin the X-ray powder pattern are [d (A), Int, (hkl)]: 2.839, 100, (404); 2.961, 91, (315); 11.385,43, (101); 7.088,41, (110); 3.380, 37, (131); 4.295, 34, (205); and 5.682, 30, (202). The empirical formula, based on 3.77(Zr + Hf + Nb + Ti) pfu, is y (NaI4.93REEo.44 o.42KO.30Sro.ls)I:16.24(Ca3.27Mn I.78REEo.62Nao.33)L6.oo(Mn 1.90Feo.nAlo.I 3Mgo.OS)L2.80 (Nbo.SSZrO.12Tio.lo)mnSio.6o(ZQ.81Hfo.06Tio.13)L3[(Si309h(Si9027 h02](Fl.SI Clo.270Ho.22)D .
    [Show full text]