minerals Review New Data on the Isomorphism in Eudialyte-Group Minerals. 2. Crystal-Chemical Mechanisms of Blocky Isomorphism at the Key Sites Ramiza K. Rastsvetaeva 1 and Nikita V. Chukanov 2,3,* 1 Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia;
[email protected] 2 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia 3 Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia * Correspondence:
[email protected] Received: 24 July 2020; Accepted: 14 August 2020; Published: 17 August 2020 Abstract: The review considers various complex mechanisms of isomorphism in the eudialyte-group minerals, involving both key positions of the heteropolyhedral framework and extra-framework components. In most cases, so-called blocky isomorphism is realized when one group of atoms and ions is replaced by another one, which is accompanied by a change in the valence state and/or coordination numbers of cations. The uniqueness of these minerals lies in the fact that they exhibit ability to blocky isomorphism at several sites of high-force-strength cations belonging to the framework and at numerous sites of extra-framework cations and anions. Keywords: eudialyte group; crystal chemistry; blocky isomorphism; peralkaline rocks 1. Introduction Eudialyte-group minerals (EGMs) are typical components of some kinds of agpaitic igneous rocks and related pegmatites and metasomatic assemblages. Crystal-chemical features of these minerals are important indicators reflecting conditions of their formation (pressure, temperature, fugacity of oxygen and volatile species, and activity of non-coherent elements [1–9]).