Ernie New.Fp5

Total Page:16

File Type:pdf, Size:1020Kb

Ernie New.Fp5 IMA/CNMNC List of Mineral Names compiled by Ernest H. Nickel & Monte C. Nichols Supplied through the courtesy of Materials Data, Inc. (http://www.MaterialsData.com) and based on the database MINERAL, which MDI makes available as a free download to the mineralogical community Status* Name CNMMC Approved Formula Strunz Classification Best, Most Recent or Most Complete reference. A Abelsonite NiC£¡H£¢N¤ 10.CA.20 American Mineralogist 63 (1978) 930 A Abenakiite-(Ce) Na¢¦Ce¦(SiO£)¦(PO¤)¦(CO£)¦(SO¢)O 9.CK.10 Canadian Mineralogist 32 (1994), 843 G Abernathyite K(UO¢)AsO¤•3H¢O 8.EB.15 American Mineralogist 41 (1956), 82 A Abhurite (SnÀÈ)¢¡Cl¡¦(OH)¡¤O¦ 3.DA.30 Canadian Mineralogist 23 (1985), 233 D Abkhazite Ca¢Mg¥Si¨O¢¢(OH)¢ American Mineralogist 63 (1978), 1023 D Abrazite K,Ca,Al,Si,O,H¢O Canadian Mineralogist 35 (1997), 1571 D Abriachanite Na¢(Fe,Mg)£(FeÁÈ)¢Si¨O¢¢(OH)¢ American Mineralogist 63 (1978), 1023 D Absite (U,Ca,Y,Ce)(Ti,Fe)¢O¦ Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 92 (1963), 113 A Abswurmbachite CuÀÈ(MnÁÈ)¦O¨(SiO¤) 9.AG.05 Neues Jahrbuch für Mineralogie, Abhandlungen 163 (1991), 117 D Abukumalite (Ca,Ce)¢Y£(SiO¤,PO¤)£(O,OH,F) American Mineralogist 51 (1966), 152 D Acadialite (Ca,K,Na)(Si,Al)£O¦•3H¢O Canadian Mineralogist 35 (1997), 1571 G Acanthite Ag¢S 2.BA.35 Handbook of Mineralogy (Anthony et al.), 1 (1990), 1 A Acetamide CH£CONH¢ 10.AA.20 Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 104 (1975), 326 G Achavalite FeSe 2.CC.05 Neues Jahrbuch für Mineralogie, Monatshefte (1972), 276 D Achiardite (Na,K,Ca)¥(Si,Al)¢¤O¤¨•14H¢O Canadian Mineralogist 35 (1997), 1571 D Achlusite Na,K,Al,Si,O(?) Canadian Mineralogist 36 (1998), 905 D Achrematite Pb,Mo,As,O,Cl American Mineralogist 62 (1977), 170 * A = Approved by CNMNC, D = Discredited by CNMNC, G = Grandfathered (original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species) , GROUP = A name used to designate a group of species, H = Hypothetical mineral (synthetic, anthropogenic, etc.), I = Intermediate member of a solid-solution series (e.g. oligoclase, a member of the albite-anorthite series), N = Published without approval by the CNMNC, Q = Questionable, Rd = Redefinition approved by CNMNC, Rn = Renamed with approval by CNMNC Copyright © 2007 Materials Data, Inc. (http://www.MaterialsData.com) 3/14/2007 1 Status* Name CNMMC Approved Formula Strunz Classification Best, Most Recent or Most Complete reference. D Achromaite Ca¢(Mg,Fe,Al)¥(Si,Al)¨O¢¢(OH)¢ American Mineralogist 63 (1978), 1023 D Achtaragdite Ca,Mg,Al,Si,O Canadian Mineralogist 44 (2006), 1617 D Acmite NaFeÁÈSi¢O¦ Mineralogical Magazine 52 (1988), 535 A Actinolite Ca¢(Mg,FeÀÈ)¥Si¨O¢¢(OH)¢ 9.DE.10 American Mineralogist 85 (2000), 1239 D Actinolitic hornblende Ca¢(Mg,FeÀÈ)¤(Al,FeÁÈ)(Si§Al)O¢¢(OH,F)¢ Canadian Mineralogist 35 (1997), 219 D Actinote Ca¢(Fe,Mg)¥(Si,Al)¨O¢¢(OH,F)¢ American Mineralogist 63 (1978), 1023 D Actynolin Ca¢(Fe,Mg)¥(Si,Al)¨O¢¢(OH,F)¢ American Mineralogist 63 (1978), 1023 D Actynolite Ca¢(Fe,Mg)¥(Si,Al)¨O¢¢(OH,F)¢ American Mineralogist 63 (1978), 1023 A Acuminite SrAlF¤(OH)•H¢O 3.CC.10 Neues Jahrbuch für Mineralogie, Monatshefte (1987), 502 G Adamite Zn¢AsO¤(OH) 8.BB.30 Handbook of Mineralogy (Anthony et al.), 4 (2000), 2 D Adamsite (of Shepard) KAl¢(Si,Al)¤O¡ (OH)¢ Canadian Mineralogist 36 (1998), 905 A Adamsite-(Y) NaY(CO£)¢•6H¢O 5.CC.30 Canadian Mineralogist 38 (2000), 1457 G Adelite CaMgAsO¤(OH) 8.BH.35 Handbook of Mineralogy (Anthony et al.), 4 (2000), 3 D Adelpholite (Y,Ce,U,Fe)£(Nb,Ta,Ti)¥O¡¦ Bulletin de la Commission Géologique de Finlande 218 (1965), 201 D Adipite Ca,Na,K,Al,Si,O,H¢O Canadian Mineralogist 35 (1997), 1571 A Admontite MgB¦O¡ •7H¢O 6.FA.15 Tschermaks Mineralogische und Petrographische Mitteilungen 26 (1979), 69 I Adularia KAlSi£O¨ 9.FA.30 Rock-forming Minerals (Deer, Howie & Zussmann), 2nd ed., 4A (2001) D Aedelforsite Na,Ca,Al,Si,O,H¢O Canadian Mineralogist 35 (1997), 1571 D Aedelite (of Kirwan) Na¢Al¢Si£O¡ •2H¢O Canadian Mineralogist 35 (1997), 1571 D Aedilite Na¢Al¢Si£O¡ •2H¢O Canadian Mineralogist 35 (1997), 1571 * A = Approved by CNMNC, D = Discredited by CNMNC, G = Grandfathered (original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species) , GROUP = A name used to designate a group of species, H = Hypothetical mineral (synthetic, anthropogenic, etc.), I = Intermediate member of a solid-solution series (e.g. oligoclase, a member of the albite-anorthite series), N = Published without approval by the CNMNC, Q = Questionable, Rd = Redefinition approved by CNMNC, Rn = Renamed with approval by CNMNC Copyright © 2007 Materials Data, Inc. (http://www.MaterialsData.com) 3/14/2007 2 Status* Name CNMMC Approved Formula Strunz Classification Best, Most Recent or Most Complete reference. A Aegirine NaFeÁÈSi¢O¦ 9.DA.25 Canadian Mineralogist 36 (1998), 779 Rd Aegirine-augite (Ca,Na)(FeÁÈ,FeÀÈ,Mg)Si¢O¦ 9.DA.20 American Mineralogist 73 (1988), 1123 D Aegirine-hedenbergite (Ca,Mg,Fe)¢Si¢O¦ Mineralogical Magazine 52 (1988), 535 D Aegirite NaFeÁÈSi¢O¦ Mineralogical Magazine 52 (1988), 535 D Aegyrite NaFeÁÈSi¢O¦ Mineralogical Magazine 52 (1988), 535 A Aenigmatite Na¢(FeÀÈ)¥TiSi¦O¢ 9.DH.40 American Mineralogist 59 (1974), 820 Rd Aërinite Ca¤(FeÁÈ)£Mg£(Si¡£Al¥)O¤¢(OH)¦•11H¢O 9.DB.45 Bulletin de Minéralogie 111 (1988), 39 Rd Aerugite Ni¨´¥(AsO¤)¢AsÃÈO¨ 8.BC.15 Handbook of Mineralogy (Anthony et al.), 4 (2000), 4 A Aeschynite-(Ce) (Ce,Ca,Fe,Th)(Ti,Nb)¢(O,OH)¦ 4.DF.05 Handbook of Mineralogy (Anthony et al.), 3 (1997), 3 A Aeschynite-(Nd) Nd(Ti,Nb)¢(O,OH)¦ 4.DF.05 Scientia Geologica Sinica (in Chinese) (1982), 424 Rn Aeschynite-(Y) (Y,Ca,Fe,Th)(Ti,Nb)¢(O,OH)¦ 4.DF.05 American Mineralogist 51 (1966), 152 H Afanasyevaite Ca¨(Si¢O§)¢•Cl¢O 9.HA.30 Doklady Akademiia Nauk, SSSR (USSR) (in Russian) 343 (1995), 94 A Afghanite (Na,Ca)£¢(Si,Al)¤¨O©¦(SO¤)¥´£CO£Cl¢•4H¢O 9.GF.45 Bulletin de la Société Française Minéralogie et de Cristallographie 91 (1968), 34 G Afwillite Ca£(SiO£)¢(OH)¢•2H¢O 9.AH.15 Handbook of Mineralogy (Anthony et al.), 2 (1995), 7 D Agalite Mg,Si,O,OH Mineralogical Magazine 52 (1988), 535 D Agalmatolite Al,Si,O,H¢O(?) Canadian Mineralogist 36 (1998), 905 A Agardite-(Ce) Cu¦Ce(AsO¤)£(OH)¦•3H¢O 8.DL.15 Aufschluss 55 (2004), 17 A Agardite-(La) Cu¦La(AsO¤)£(OH)¦•3H¢O 8.DL.15 Lapis 1 (1984), 22, 37 N Agardite-(Nd) Cu¦Nd(AsO¤)£(OH)¦•3H¢O 8.DL.15 Neues Jahrbuch für Mineralogie, Monatshefte (2002), 107 A Agardite-(Y) Cu¦Y(AsO¤)£(OH)¦•3H¢O 8.DL.15 Bulletin de la Société Française Minéralogie et de Cristallographie 92 (1969), 420 * A = Approved by CNMNC, D = Discredited by CNMNC, G = Grandfathered (original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species) , GROUP = A name used to designate a group of species, H = Hypothetical mineral (synthetic, anthropogenic, etc.), I = Intermediate member of a solid-solution series (e.g. oligoclase, a member of the albite-anorthite series), N = Published without approval by the CNMNC, Q = Questionable, Rd = Redefinition approved by CNMNC, Rn = Renamed with approval by CNMNC Copyright © 2007 Materials Data, Inc. (http://www.MaterialsData.com) 3/14/2007 3 Status* Name CNMMC Approved Formula Strunz Classification Best, Most Recent or Most Complete reference. D Aglaite Li,Al,Si,O Mineralogical Magazine 52 (1988), 535 A Agrellite NaCa¢Si¤O¡ F 9.DH.75 Canadian Mineralogist 14 (1976), 120 A Agrinierite K¢Ca(UO¢)¦O¦(OH)¤•5H¢O 4.GB.05 Mineralogical Magazine 38 (1972), 781 Q Aguilarite Ag¤SeS 2.BA.55 Handbook of Mineralogy (Anthony et al.), 1 (1990), 2 A Aheylite FeÀÈAl¦(PO¤)¤(OH)¨•4H¢O 8.DD.25 Mineralogical Magazine 62 (1998), 93 G Ahlfeldite NiSeO£•2H¢O 4.JH.10 Materials Research Bulletin 40 (2005), 781 G Aikinite CuPbBiS£ 2.HB.05 Neues Jahrbuch für Mineralogie, Monatshefte (2001), 115 G Ajoite Na£(CuÀÈ)¢ Al£Si¢©O§¦(OH)¡¦•8H¢O 9.EA.70 American Mineralogist 66 (1981), 201 A Akaganéite (FeÁÈ,NiÀÈ)¨(OH,O)¡¦•1.25Cl 4.DK.05 American Mineralogist 88 (2003), 782 A Akatoreite (MnÀÈ)©Al¢Si¨O¢¤(OH)¨ 9.BH.15 American Mineralogist 56 (1971), 416 A Akdalaite (Al¢O£)¤•H¢O 4.FM.05 Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 99 (1970), 333 G Åkermanite Ca¢MgSi¢O§ 9.BB.10 Rock-forming Minerals (Deer, Howie & Zussmann), 2nd. ed., 1B (1986), 285 A Akhtenskite MnO¢ 4.DB.15 International Geology Review 31 (1989), 1068 A Akimotoite MgSiO£ 9.DA.05 American Mineralogist 84 (1999), 267 G Akrochordite MnÀÈ(AsO¤)¢(OH)¤•4H¢O 8.DD.10 Handbook of Mineralogy (Anthony et al.), 4 (2000), 8 A Aksaite MgB¦O§(OH)¦•2H¢O 6.FA.05 American Mineralogist 48 (1963), 930 N Aktashite Cu¦Hg£As¤S¡¢ 2.GA.30 Transactions (Doklady) of the USSR Academy of Sciences, Earth Science Sections 206 (1972), 127 D Aktinolitischer tschermakite Ca¢(Mg,Fe,Al)¥(Si,Al)¨O¢¢(OH,F) American Mineralogist 63 (1978), 1023 G Alabandite MnS 2.CD.10 Handbook of Mineralogy (Anthony et al.), 1 (1990), 5 A Alacranite As¨S© 2.FA.20 American Mineralogist 88 (2003), 1796 * A = Approved by CNMNC, D = Discredited by CNMNC, G = Grandfathered (original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species) , GROUP = A name used to designate a group of species, H = Hypothetical mineral (synthetic, anthropogenic, etc.), I = Intermediate member of a solid-solution series (e.g.
Recommended publications
  • An Application of Near-Infrared and Mid-Infrared Spectroscopy to the Study of 3 Selected Tellurite Minerals: Xocomecatlite, Tlapallite and Rodalquilarite 4 5 Ray L
    QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. and Reddy, B. Jagannadha (2009) An application of near-infrared and mid- infrared spectroscopy to the study of selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite. Transition Metal Chemistry, 34(1). pp. 23-32. © Copyright 2009 Springer 1 2 An application of near-infrared and mid-infrared spectroscopy to the study of 3 selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite 4 5 Ray L. Frost, • B. Jagannadha Reddy, Eloise C. Keeffe 6 7 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 8 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 9 Australia. 10 11 Abstract 12 Near-infrared and mid-infrared spectra of three tellurite minerals have been 13 investigated. The structure and spectral properties of two copper bearing 14 xocomecatlite and tlapallite are compared with an iron bearing rodalquilarite mineral. 15 Two prominent bands observed at 9855 and 9015 cm-1 are 16 2 2 2 2 2+ 17 assigned to B1g → B2g and B1g → A1g transitions of Cu ion in xocomecatlite. 18 19 The cause of spectral distortion is the result of many cations of Ca, Pb, Cu and Zn the 20 in tlapallite mineral structure. Rodalquilarite is characterised by ferric ion absorption 21 in the range 12300-8800 cm-1. 22 Three water vibrational overtones are observed in xocomecatlite at 7140, 7075 23 and 6935 cm-1 where as in tlapallite bands are shifted to low wavenumbers at 7135, 24 7080 and 6830 cm-1. The complexity of rodalquilarite spectrum increases with more 25 number of overlapping bands in the near-infrared.
    [Show full text]
  • Calcium Orthophosphates (Capo4): Occurrence and Properties
    Prog Biomater DOI 10.1007/s40204-015-0045-z REVIEW PAPER Calcium orthophosphates (CaPO4): occurrence and properties Sergey V. Dorozhkin1 Received: 6 October 2015 / Accepted: 5 November 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The present overview is intended to point the Introduction readers’ attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the Due to the abundance in nature (as phosphate ores) and special significance for the human beings because they presence in living organisms (as bones, teeth, deer antlers represent the inorganic part of major normal (bones, teeth and the majority of various pathological calcifications), and antlers) and pathological (i.e., those appearing due to calcium phosphates are the inorganic compounds of a special various diseases) calcified tissues of mammals. For exam- interest for human being. They were discovered in 1769 and ple, atherosclerosis results in blood vessel blockage caused have been investigated since then (Dorozhkin 2012a, 2013a). by a solid composite of cholesterol with CaPO4, while According to the databases of scientific literature (Web of dental caries and osteoporosis mean a partial decalcifica- knowledge, Scopus, Medline, etc.), the total amount of tion of teeth and bones, respectively, that results in currently available publications on the subject exceeds replacement of a less soluble and harder biological apatite 40,000 with the annual increase for, at least, 2000 papers. by more soluble and softer calcium hydrogenorthophos- This is a clear confirmation of the importance. phates. Therefore, the processes of both normal and Briefly, by definition, all known calcium phosphates pathological calcifications are just an in vivo crystallization consist of three major chemical elements: calcium (oxi- of CaPO4.
    [Show full text]
  • Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization
    materials Review Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization Albina I. Orlova 1 and Michael I. Ojovan 2,3,* 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation 2 Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia 3 Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 12 August 2019; Published: 19 August 2019 Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • New Mineral Names*
    Ameican Mineralogist, Volume 83, pages 400-403, 1998 NEW MINERAL NAMES* JouN L. JAvrsonr aNo ANonEw C. Ronnnrs2 rDepartmentof Earth Sciences,University of Waterloo, Waterloo, Ontario N2L 3Gl, Canada 'Geological Survey of Canada,601 Booth Street,Ottawa, Ontario KIA 0Gl, Canada Benyacarite* from the results of a crystal structure determination.The F Demartin, T. Pilati, H.D. Gay, C.M. Gramaccioli (1993) empirical formula on the basis of 23 anions is The crystal structureof a mineral related to paulkerrite. (Ca.ouKoo,)r. urB5O6(OH)?Cl,nn.8HrO. The mineral occurs Zeits. Kristallogr.,208, 51-7I. as micaceous grains, 0.5 x 0.25 x 0.1 mm, that form E Demartin, H.D. Gay, C.M. Gramaccioli, T. Pilati (1997) cleavablemasses up to 2 x 1 x 1 mm. Colorlessto white, Benyacarite, a new titanium-bearingphosphate mineral transparent to translucent, viffeous luster, white streak, speciesfrom Cerro Blanco, Argentina. Can. Mineral., flexible, micaceous,perfect cleavage, : 35,701-712. {010} H 5, twinned on (010),nonfluorescent, D-""" : L91(3), D.^.: Chemical data in the 1993 paper were abstractedin 1.93 glcm3 for Z : 2. The IR spectrum shows the pres- Am. Mineral., 79, p. 763, 1994.On the basisof Z : 4, ence of HrO groups and complex borate groups.Optically the empirical formula is [(HrO)orrK.o,uNfo o.], Ti(Mn2*Vor. biaxial negative, ct : 1.506(2), P : 1.527(2), 1 : Fefrl,Mgo.),(Fe3*8Ti6j8Al00,),(PO")o(OouFoo),. l4H,O, The I.532(2),2V^"",: 56(l),2V,^,.: 51.4', oientationZ : mineral occurs as euhedral tabular to almost equidimen- b, X A c : 3U in the obtuse angle B.
    [Show full text]
  • Calcium Orthophosphates: Occurrence, Properties and Major Applications Sergey V
    lopmen e t an ev d D A s p c i p Dorozhkin, Bioceram Dev Appl 2014, 4:2 l i m c a a Bioceramics Development r t e i o DOI: 10.4172/2090-5025.1000081 c n o i s B ISSN: 2090-5025 and Applications Short communication Open Access Calcium Orthophosphates: Occurrence, Properties and Major Applications Sergey V. Dorozhkin* Kudrinskaja sq. 1-155, Moscow 123242, Russia Abstract The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. They are of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. Therefore, the majority of the artificially prepared calcium orthophosphates of high purity appear to be well tolerated by human tissues in vivo and possess the excellent biocompatibility, osteoconductivity and bioresorbability. These biomedical properties of calcium orthophosphates are widely used to construct bone grafts. In addition, natural calcium orthophosphates are the major source of phosphorus, which are used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of calcium orthophosphates for the humankind and, here, an overview on the current knowledge on this subject is provided. Keywords: Calcium orthophosphates; Hydroxyapatite; Fluorapatite; In general, the atomic arrangement of all calcium orthophosphates Occurrence; Properties; Applications is built up around a network of orthophosphate (PO4) groups, which stabilize the entire structure. Therefore, the majority of calcium Introduction orthophosphates are sparingly soluble in water Table 1; however, all Due to the abundance in nature (as phosphate ores) and presence of them are easily soluble in acids but insoluble in alkaline solutions.
    [Show full text]
  • Murun Massif, Aldan Shield of the Siberian Craton: a Simple Story for an Intricate Igneous Complex
    minerals Article 40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex Alexei V. Ivanov 1,* , Nikolay V. Vladykin 2, Elena I. Demonterova 1, Viktor A. Gorovoy 1 and Emilia Yu. Dokuchits 2 1 Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; [email protected] (E.I.D.); [email protected] (V.A.G.) 2 A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; [email protected] (N.V.V.); [email protected] (E.Y.D.) * Correspondence: [email protected]; Tel.: +7-395-242-7000 Received: 17 November 2018; Accepted: 16 December 2018; Published: 19 December 2018 Abstract: The Malyy (Little) Murun massif of the Aldan Shield of the Siberian Craton has long been a kind of Siberian Mecca for geologists. It has attracted thousands of geologists, prospectors, and mineral collectors despite its remote location. It is famous for a dozen new and rare minerals, including the gemstones charoite and dianite (the latter is the market name for strontian potassicrichrerite), as well as for a range of uncommon alkaline igneous rocks. Despite this, the age of the Malyy Murun igneous complex and associated metasomatic and hydrothermal mineral associations has remained poorly constrained until now. In this paper, we provide extensive 40Ar/39Ar geochronological data to reveal its age and temporal history. It appears that, although unique in terms of rocks and constituent minerals, the Malyy Murun is just one of multiple alkaline massifs and lavas emplaced in the Early Cretaceous (~137–128 Ma) within a framework of the extensional setting of the Aldan Shield and nearby Transbaikalian region.
    [Show full text]
  • 51St Annual Franklin-Sterling Gem and Mineral Show
    ANNUAL Franklin - Sterling GEM & MINERAL SHOW SATURDAY & SUNDAY SEPTEMBER 29th & 30th, 2007 Sponsored By ;FRANKLIN. MI M I ; I' N 1 S F E R i U A i ■ N I I, '.--...., - Franklin, New Jersey The Fluorescent Mineral Capital Of The World STERLING HILL MINING MUSEUM 30 PLANT STREET OGDENSBURG, NJ 07439-1126 Welcome to The Sterling Hill Mine in Ogdensburg, NJ UNDERGROUND MINE TOURS • • • PASSAIC & NOBLE PIT • • COLLECTING OPEN TO THE PUBLIC • • • • During the Franklin-Sterling Hill Mineral Show, Sept. 30, 2007 • • Open Sunday, 9 AM to 3 PM • Admission: $5.00 per person, $1.50 per pound for anything taken • • • • • • STERLING HILL GARAGE SALE • • • • September 29th and 30th • Saturday and Sunday, from 11 AM to 3 PM • FRANKLIN MINE TOUR ADMISSION Citi N a. ADULT 10.00 CHILDREN (UNDER 12) 7.50 SENIOR CITIZEN (65+) 9.00 HOURS STERLING HILL OPEN 7 DAYS A WEEK MINING MUSEUM NEW YORK HOURS 10 AM TO 3 PM TOURS AT 1:00 PM DAILY OGDENSBURG & OTHER TIMES BY CHANCE I OR APPOINTMENT (:) GREEN THUMB FROM APRIL 1 TO NOV. 30 NURSERY MARCH AND DEC., WEEKENDS ONLY OTHER TIMES BY APPOINTMENT SPARTA JAN AND FEB., WEEKENDS ONLY FRANKLIN OTHER TIMES BY APPOINTMENT EXIT Nite Collecting Sat. Sept. 29th from 6-11 PM GROUP RATES AVAILABLE EXIT 34B For information call DOVER (973)209-7212 COLLECTING AVAILABLE FAX 973-209-8505 7 Days A Week, April to Nov. 10 AM to 3 PM www.sterlinghill.org MINERAL SPECIES FOUND AT FRANKLIN-STERLING HILL, NJ (Revised by FOMS Mineral List Committee September 2007) Acanthite Birnessite Cuprite Actinolite Bornite Cuprostibite Adamite Bostwickite
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • Demesmaekerite Pb2cu5(UO2)2(Se O3)6(OH)6 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1
    4+ Demesmaekerite Pb2Cu5(UO2)2(Se O3)6(OH)6 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Crystals are elongated along [001] and flattened on {100} or {010}, with dominant {100} and {010}, secondary faces typically striated k [101], to 1 cm; in radial aggregates. Physical Properties: Hardness = 3–4 D(meas.) = 5.28(4) D(calc.) = 5.42 Radioactive. Optical Properties: Translucent to opaque. Color: Bottle-green to pale olive-green, becoming brownish green with dehydration. Optical Class: Biaxial (+). Pleochroism: X 0 = yellow-green; Y 0 = brown. α = 1.835(5) (α 0) β = n.d. γ = 1.910(5) (γ 0) 2V(meas.) = n.d. Cell Data: Space Group: P 1. a = 11.955(5) b = 10.039(4) c = 5.639(2) α =89.78(4)◦ β = 100.36(4)◦ γ =91.34(4)◦ Z=1 X-ray Powder Pattern: Musonoi mine, Congo. 2.97 (FFF), 5.42 (FF), 5.89 (F), 3.34 (F), 5.14 (mF), 4.72 (mF), 4.67 (mF) Chemistry: (1) (2) SeO2 30.9 30.65 UO3 27.6 26.34 PbO 19.4 20.55 CuO 18.2 18.31 H2O 4.2 4.15 Total 100.3 100.00 (1) Musonoi mine, Congo; H2O by the Penfield method; corresponds to Pb1.87Cu4.93(UO2)2.08 • • (SeO3)6(OH)6.04 2H2O. (2) Pb2Cu5(UO2)2(SeO3)6(OH)6 2H2O. Occurrence: Rare in the lower oxidized portions of a selenium-bearing Cu–Co deposit. Association: Cuprosklodowskite, kasolite, guilleminite, derriksite, chalcomenite, malachite, selenian digenite.
    [Show full text]
  • Use of Local Minerals in the Treatment of Radioactive Waste
    O = 0(0H) •=Si(AI) O = 0(0H) # = AI, Mg, Fe, etc. TECHNICAL REPORTS SERIES No. 136 Use of Local Minerals in the Treatment of Radioactive Waste INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1972 USE OF LOCAL MINERALS IN THE TREATMENT OF RADIOACTIVE WASTE The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PANAMA ALGERIA HOLY SEE PARAGUAY ARGENTINA HUNGARY PERU AUSTRALIA ICELAND PHILIPPINES AUSTRIA INDIA POLAND BELGIUM INDONESIA PORTUGAL BOLIVIA IRAN ROMANIA BRAZIL IRAQ SAUDI ARABIA BULGARIA IRELAND SENEGAL BURMA ISRAEL SIERRA LEONE BYELORUSSIAN SOVIET ITALY SINGAPORE SOCIALIST REPUBLIC IVORY COAST SOUTH AFRICA CAMEROON JAMAICA SPAIN CANADA JAPAN SUDAN CEYLON JORDAN SWEDEN CHILE KENYA SWITZERLAND CHINA KHMER REPUBLIC SYRIAN ARAB REPUBLIC COLOMBIA KOREA, REPUBLIC OF THAILAND COSTA RICA KUWAIT TUNISIA CUBA LEBANON TURKEY CYPRUS LIBERIA UGANDA CZECHOSLOVAK SOCIALIST LIBYAN ARAB REPUBLIC UKRAINIAN SOVIET SOCIALIST REPUBLIC LIECHTENSTEIN REPUBLIC DENMARK LUXEMBOURG UNION OF SOVIET SOCIALIST DOMINICAN REPUBLIC MADAGASCAR REPUBLICS ECUADOR MALAYSIA UNITED KINGDOM OF GREAT EGYPT, ARAB REPUBLIC OF MALI BRITAIN AND NORTHERN EL SALVADOR MEXICO IRELAND ETHIOPIA MONACO UNITED STATES OF AMERICA FINLAND MOROCCO URUGUAY FRANCE NETHERLANDS VENEZUELA GABON NEW ZEALAND VIET-NAM GERMANY, FEDERAL REPUBLIC OF NIGER YUGOSLAVIA GHANA NIGERIA ZAIRE, REPUBLIC OF GREECE NORWAY ZAMBIA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".
    [Show full text]