sustainability Article Analyzing the Effect of Parasitic Capacitance in a Full-Bridge Class-D Current Source Rectifier on a High Step-Up Push–Pull Multiresonant Converter Anusak Bilsalam 1,* , Chainarin Ekkaravarodome 2, Viboon Chunkag 3 and Phatiphat Thounthong 4 1 Department of Electrical Engineering Technology, College of Industrial Technology (CIT), King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bang Sue, Bangkok 10800, Thailand 2 Advanced Power Electronics and Experiment Laboratory, Department of Instrumentation and Electronics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bang Sue, Bangkok 10800, Thailand;
[email protected] 3 Department Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bang Sue, Bangkok 10800, Thailand;
[email protected] 4 Renewable Energy Research Centre, Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bang Sue, Bangkok 10800, Thailand;
[email protected] * Correspondence:
[email protected] Abstract: This paper presents an analysis on the effect of a parasitic capacitance full-bridge class-D current source rectifier (FB-CDCSR) on a high step-up push–pull multiresonant converter (HSPPMRC). The proposed converter can provide high voltage for a 12 V battery using an isolated transformer Citation: Bilsalam, A.; DC Ekkaravarodome, C.; Chunkag, V.; and an FB-CDCSR. The main switches of the push–pull and diode full-bridge rectifier can be operated Thounthong, P.