4Gb: X16 DDR4 SDRAM Features DDR4 SDRAM EDY4016A - 256Mb X 16

Total Page:16

File Type:pdf, Size:1020Kb

4Gb: X16 DDR4 SDRAM Features DDR4 SDRAM EDY4016A - 256Mb X 16 4Gb: x16 DDR4 SDRAM Features DDR4 SDRAM EDY4016A - 256Mb x 16 Features • Databus write cyclic redundancy check (CRC) • Per-DRAM addressability •VDD = VDDQ = 1.2V ±60mV • Connectivity test •VPP = 2.5V, –125mV/+250mV • JEDEC JESD-79-4 compliant • On-die, internal, adjustable VREFDQ generation • 1.2V pseudo open-drain I/O Options1 Marking •TC of 0°C to 95°C • Revision A – 64ms, 8192-cycle refresh at 0°C to 85°C • FBGA package size – 32ms at 85°C to 95°C – 96-ball (7.5mm x 13.5mm) BG • 8 internal banks: 2 groups of 4 banks each • Timing – cycle time •8n-bit prefetch architecture – 0.625ns @ CL = 24 (DDR4-3200) -JD • Programmable data strobe preambles – 0.750ns @ CL = 19 (DDR4-2666) -GX • Data strobe preamble training – 0.833ns @ CL = 16 (DDR4-2400) -DR • Command/Address latency (CAL) • Packaging • Multipurpose register READ and WRITE capability – Lead-free (RoHS-compliant) and hal- - F • Write and read leveling ogen-free • Self refresh mode • Low-power auto self refresh (LPASR) Notes: 1. Not all options listed can be combined to • Temperature controlled refresh (TCR) define an offered product. Use the part • Fine granularity refresh catalog search on http://www.micron.com • Self refresh abort for available offerings. • Maximum power saving 2. Restricted and limited availability. • Output driver calibration • Nominal, park, and dynamic on-die termination (ODT) • Data bus inversion (DBI) for data bus • Command/Address (CA) parity Table 1: Key Timing Parameters Speed Grade Data Rate (MT/s) Target tRCD-tRP-CL tRCD (ns) tRP (ns) CL (ns) -JD1 3200 24-24-24 15.0 15.0 15.0 -GX2 2666 19-19-19 14.25 14.25 14.25 -DR3 2400 16-16-16 13.32 13.32 13.32 Notes: 1. Backward compatible to 2666 CL = 20, 2400 CL = 18), 2133 CL = 16, 1866 CL = 14, 1600 CL = 12. 2. Backward compatible to 2400 CL = 17, 2133 CL = 15, 1866 CL = 13, 1600 CL = 11. 3. Backward compatible to 2133 CL = 15, 1866 CL = 13, 1600 CL = 11. Table 2: Addressing Parameter 256 Meg x 16 Number of bank groups 2 Bank group address BG0 PDF: 09005aef85f537bf Micron Technology, Inc. reserves the right to change products or specifications without notice. 4gb_ddr4_dram_2e0d.pdf - Rev. E 7/17 EN 1 © 2014 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 4Gb: x16 DDR4 SDRAM Features Table 2: Addressing (Continued) Parameter 256 Meg x 16 Bank count per group 4 Bank address in bank group BA[1:0] Row addressing 32K (A[14:0]) Column addressing 1K (A[9:0]) Page size1 2KB Note: 1. Page size is per bank, calculated as follows: Page size = 2COLBITS × ORG/8, where COLBIT = the number of column address bits and ORG = the number of DQ bits. Micron Memory Japan DDR4 Part Numbering Figure 1: 4Gb DDR4 Part Numbers E D Y 40 16 A A BG - JD - F- D Manufacturer: Packing Media: D = Dry pack (tray) Micron Memory Japan R = Tape and Reel Packaging: Packaged device Packaging: Lead-free (RoHS-compliant) and halogen-free Product Type: DDR4 Speed: JD = DDR4-3200 (24-24-24) Density: 4Gb GX = DDR4-2666 (19-19-19) DR = DDR4-2400 (16-16-16) Organization: x16 Package: FBGA Power Supply/VDDQ Term.: 1.2V Die revision PDF: 09005aef85f537bf Micron Technology, Inc. reserves the right to change products or specifications without notice. 4gb_ddr4_dram_2e0d.pdf - Rev. E 7/17 EN 2 © 2014 Micron Technology, Inc. All rights reserved. 4Gb: x16 DDR4 SDRAM Features Contents General Notes and Description ....................................................................................................................... 18 Description ................................................................................................................................................ 18 Industrial Temperature ............................................................................................................................... 18 General Notes ............................................................................................................................................ 18 Definitions of the Device-Pin Signal Level ................................................................................................... 19 Definitions of the Bus Signal Level ............................................................................................................... 19 Ball Assignments ............................................................................................................................................ 20 Ball Descriptions ............................................................................................................................................ 21 Package Dimensions ....................................................................................................................................... 24 State Diagram ................................................................................................................................................ 25 Functional Description ................................................................................................................................... 27 RESET and Initialization Procedure ................................................................................................................. 28 Power-Up and Initialization Sequence ......................................................................................................... 28 RESET Initialization with Stable Power Sequence ......................................................................................... 31 Uncontrolled Power-Down Sequence .......................................................................................................... 32 Programming Mode Registers ......................................................................................................................... 33 Mode Register 0 .............................................................................................................................................. 36 Burst Length, Type, and Order ..................................................................................................................... 38 CAS Latency ............................................................................................................................................... 39 Test Mode .................................................................................................................................................. 39 Write Recovery(WR)/READ-to-PRECHARGE ............................................................................................... 39 DLL RESET ................................................................................................................................................. 39 Mode Register 1 .............................................................................................................................................. 40 DLL Enable/DLL Disable ............................................................................................................................ 41 Output Driver Impedance Control ............................................................................................................... 42 ODT RTT(NOM) Values .................................................................................................................................. 42 Additive Latency ......................................................................................................................................... 42 DQ RX EQ .................................................................................................................................................. 42 Write Leveling ............................................................................................................................................ 43 Output Disable ........................................................................................................................................... 43 Termination Data Strobe ............................................................................................................................. 43 Mode Register 2 .............................................................................................................................................. 44 CAS WRITE Latency .................................................................................................................................... 46 Low-Power Auto Self Refresh ....................................................................................................................... 46 Dynamic ODT ............................................................................................................................................ 46 Write Cyclic Redundancy Check Data Bus .................................................................................................... 46 Mode Register 3 .............................................................................................................................................. 47 Multipurpose Register ................................................................................................................................ 48 WRITE Command Latency When CRC/DM is Enabled ................................................................................. 49 Fine Granularity Refresh Mode .................................................................................................................... 49 Temperature Sensor Status ........................................................................................................................
Recommended publications
  • Product Guide SAMSUNG ELECTRONICS RESERVES the RIGHT to CHANGE PRODUCTS, INFORMATION and SPECIFICATIONS WITHOUT NOTICE
    May. 2018 DDR4 SDRAM Memory Product Guide SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other- wise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2018 Samsung Electronics Co., Ltd. All rights reserved. - 1 - May. 2018 Product Guide DDR4 SDRAM Memory 1. DDR4 SDRAM MEMORY ORDERING INFORMATION 1 2 3 4 5 6 7 8 9 10 11 K 4 A X X X X X X X - X X X X SAMSUNG Memory Speed DRAM Temp & Power DRAM Type Package Type Density Revision Bit Organization Interface (VDD, VDDQ) # of Internal Banks 1. SAMSUNG Memory : K 8. Revision M: 1st Gen. A: 2nd Gen. 2. DRAM : 4 B: 3rd Gen. C: 4th Gen. D: 5th Gen.
    [Show full text]
  • You Need to Know About Ddr4
    Overcoming DDR Challenges in High-Performance Designs Mazyar Razzaz, Applications Engineering Jeff Steinheider, Product Marketing September 2018 | AMF-NET-T3267 Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V. Agenda • Basic DDR SDRAM Structure • DDR3 vs. DDR4 SDRAM Differences • DDR Bring up Issues • Configurations and Validation via QCVS Tool COMPANY PUBLIC 1 BASIC DDR SDRAM STRUCTURE COMPANY PUBLIC 2 Single Transistor Memory Cell Access Transistor Column (bit) line Row (word) line G S D “1” => Vcc “0” => Gnd “precharged” to Vcc/2 Cbit Ccol Storage Parasitic Line Capacitor Vcc/2 Capacitance COMPANY PUBLIC 3 Memory Arrays B0 B1 B2 B3 B4 B5 B6 B7 ROW ADDRESS DECODER ADDRESS ROW W0 W1 W2 SENSE AMPS & WRITE DRIVERS COLUMN ADDRESS DECODER COMPANY PUBLIC 4 Internal Memory Banks • Multiple arrays organized into banks • Multiple banks per memory device − DDR3 – 8 banks, and 3 bank address (BA) bits − DDR4 – 16 banks with 4 banks in each of 4 sub bank groups − Can have one active row in each bank at any given time • Concurrency − Can be opening or closing a row in one bank while accessing another bank Bank 0 Bank 1 Bank 2 Bank 3 Row 0 Row 1 Row 2 Row 3 Row … Row Buffers COMPANY PUBLIC 5 Memory Access • A requested row is ACTIVATED and made accessible through the bank’s row buffers • READ and/or WRITE are issued to the active row in the row buffers • The row is PRECHARGED and is no longer
    [Show full text]
  • Improving DRAM Performance by Parallelizing Refreshes
    Improving DRAM Performance by Parallelizing Refreshes with Accesses Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishti† [email protected] [email protected] [email protected] Alaa R. Alameldeen† Chris Wilkerson† Yoongu Kim Onur Mutlu [email protected] [email protected] [email protected] [email protected] Carnegie Mellon University †Intel Labs Abstract Each DRAM cell must be refreshed periodically every re- fresh interval as specified by the DRAM standards [11, 14]. Modern DRAM cells are periodically refreshed to prevent The exact refresh interval time depends on the DRAM type data loss due to leakage. Commodity DDR (double data rate) (e.g., DDR or LPDDR) and the operating temperature. While DRAM refreshes cells at the rank level. This degrades perfor- DRAM is being refreshed, it becomes unavailable to serve mance significantly because it prevents an entire DRAM rank memory requests. As a result, refresh latency significantly de- from serving memory requests while being refreshed. DRAM de- grades system performance [24, 31, 33, 41] by delaying in- signed for mobile platforms, LPDDR (low power DDR) DRAM, flight memory requests. This problem will become more preva- supports an enhanced mode, called per-bank refresh, that re- lent as DRAM density increases, leading to more DRAM rows freshes cells at the bank level. This enables a bank to be ac- to be refreshed within the same refresh interval. DRAM chip cessed while another in the same rank is being refreshed, alle- density is expected to increase from 8Gb to 32Gb by 2020 as viating part of the negative performance impact of refreshes.
    [Show full text]
  • Datasheet DDR4 SDRAM Revision History
    Rev. 1.4, Apr. 2018 M378A5244CB0 M378A1K43CB2 M378A2K43CB1 288pin Unbuffered DIMM based on 8Gb C-die 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other- wise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2018 Samsung Electronics Co., Ltd.GG All rights reserved. - 1 - Rev. 1.4 Unbuffered DIMM datasheet DDR4 SDRAM Revision History Revision No. History Draft Date Remark Editor 1.0 - First SPEC. Release 27th Jun. 2016 - J.Y.Lee 1.1 - Deletion of Function Block Diagram [M378A1K43CB2] on page 11 29th Jun. 2016 - J.Y.Lee - Change of Physical Dimensions [M378A1K43CB1] on page 41 1.11 - Correction of Typo 7th Mar. 2017 - J.Y.Lee 1.2 - Change of Physical Dimensions [M378A1K43CB1] on page 41 23h Mar.
    [Show full text]
  • CPU Clock Rate DRAM Access Latency Growing
    CPU clock rate . Apple II – MOS 6502 (1975) 1~2MHz . Original IBM PC (1981) – Intel 8080 4.77MHz CS/COE1541: Introduction to . Intel 486 50MHz Computer Architecture . DEC Alpha Memory hierarchy • EV4 (1991) 100~200MHz • EV5 (1995) 266~500MHz • EV6 (1998) 450~600MHz Sangyeun Cho • EV67 (1999) 667~850MHz Computer Science Department University of Pittsburgh . Today’s processors – 2~5GHz CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh 2 DRAM access latency Growing gap . How long would it take to fetch a memory block from main memory? • Time to determine that data is not on-chip (cache miss resolution time) • Time to talk to memory controller (possibly on a separate chip) • Possible queuing delay at memory controller • Time for opening a DRAM row • Time for selecting a portion in the selected row (CAS latency) • Time to transfer data from DRAM to CPU Possibly through a separate chip • Time to fill caches as needed . The total latency can be anywhere from 100~400 CPU cycles CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh 3 4 Idea of memory hierarchy Memory hierarchy goals . To create an illusion of “fast and large” main memory Smaller CPU Faster Regs • As fast as a small SRAM-based memory More expensive per byte • As large (and cheap) as DRAM-based memory L1 cache . To provide CPU with necessary data and instructions as SRAM quickly as possible • Frequently used data must be placed near CPU L2 cache • “Cache hit” when CPU finds its data in cache SRAM • Cache hit rate = # of cache hits/# cache accesses • Avg.
    [Show full text]
  • DDR4 8Gb C Die Unbuffered SODIMM Rev1.5 Apr.18.Book
    Rev. 1.5, Apr. 2018 M471A5244CB0 M471A1K43CB1 M471A2K43CB1 260pin Unbuffered SODIMM based on 8Gb C-die 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other- wise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2018 Samsung Electronics Co., Ltd. All rights reserved. - 1 - Rev. 1.5 Unbuffered SODIMM datasheet DDR4 SDRAM Revision History Revision No. History Draft Date Remark Editor 1.0 - First SPEC. Release 27th Jun. 2016 - J.Y.Lee 1.1 - Change of Function Block Diagram [M471A1K43CB1] on page 10~11 29th Jun. 2016 - J.Y.Lee - Change of Physical Dimensions on page 42~43 1.2 - Change of Physical Dimensions on page 42~43 24th Feb.
    [Show full text]
  • Performance Evaluation and Feasibility Study of Near-Data Processing on DRAM Modules (DIMM-NDP) for Scientific Applications Matthias Gries, Pau Cabré, Julio Gago
    Performance Evaluation and Feasibility Study of Near-data Processing on DRAM Modules (DIMM-NDP) for Scientific Applications Matthias Gries, Pau Cabré, Julio Gago To cite this version: Matthias Gries, Pau Cabré, Julio Gago. Performance Evaluation and Feasibility Study of Near-data Processing on DRAM Modules (DIMM-NDP) for Scientific Applications. [Technical Report] Huawei Technologies Duesseldorf GmbH, Munich Research Center (MRC). 2019. hal-02100477 HAL Id: hal-02100477 https://hal.archives-ouvertes.fr/hal-02100477 Submitted on 15 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 1 Performance Evaluation and Feasibility Study of Near-data Processing on DRAM Modules (DIMM-NDP) for Scientific Applications Matthias Gries , Pau Cabre,´ Julio Gago Abstract—As the performance of DRAM devices falls more and more behind computing capabilities, the limitations of the memory and power walls are imminent. We propose a practical Near-Data Processing (NDP) architecture DIMM-NDP for mitigating the effects of the memory wall in the nearer-term targeting server applications for scientific computing. DIMM-NDP exploits existing but unused DRAM bandwidth on memory modules (DIMMs) and takes advantage of a subset of the forthcoming JEDEC NVDIMM-P protocol in order to integrate application-specific, programmable functionality near memory.
    [Show full text]
  • SDRAM Memory Systems: Architecture Overview and Design Verification SDRAM Memory Systems: Architecture Overview and Design Verification Primer
    Primer SDRAM Memory Systems: Architecture Overview and Design Verification SDRAM Memory Systems: Architecture Overview and Design Verification Primer Table of Contents Introduction . 3 - 4 DRAM Trends . .3 DRAM . 4 - 6 SDRAM . 6 - 9 DDR SDRAM . .6 DDR2 SDRAM . .7 DDR3 SDRAM . .8 DDR4 SDRAM . .9 GDDR and LPDDR . .9 DIMMs . 9 - 13 DIMM Physical Size . 9 DIMM Data Width . 9 DIMM Rank . .10 DIMM Memory Size & Speed . .10 DIMM Architecture . .10 Serial Presence Detect . .12 Memory System Design . .13 - 15 Design Simulation . .13 Design Verification . .13 Verification Strategy . .13 SDRAM Verification . .14 Glossary . .16 - 19 2 www.tektronix.com/memory SDRAM Memory Systems: Architecture Overview and Design Verification Primer Introduction Memory needs to be compatible with a wide variety of memory controller hubs used by the computer DRAM (Dynamic Random Access Memory) is attractive to manufacturers. designers because it provides a broad range of performance Memory needs to work when a mixture of different and is used in a wide variety of memory system designs for manufacturer’s memories is used in the same memory computers and embedded systems. This DRAM memory system of the computer. primer provides an overview of DRAM concepts, presents potential future DRAM developments and offers an overview Open memory standards are useful in helping to ensure for memory design improvement through verification. memory compatibility. DRAM Trends On the other hand, embedded systems typically use a fixed There is a continual demand for computer memories to be memory configuration, meaning the user does not modify larger, faster, lower powered and physically smaller. These the memory system after purchasing the product.
    [Show full text]
  • Ddr4 Sdram Memory
    DDR4 SDRAM MEMORY 3D4D32G72LB2758 Datasheet 2. KEY FEATURES Including decoupling and termination Industrial up to Military temperature range Organization: 512M x 64 bits + 8b ECC Max Clock rate available: 1200MHz Max Transfer Rate 2400MT/s VDD/VDDQ = 1.2V (1.14V to 1.26V) 1. PRODUCT OVERVIEW VPP = 2.5V (2.375V to 2.75V) Command/Address latency The 3D4D32G72LB2758 is a 32Gbits high speed Burst length (BL): 8 (BL8) and Burst Chop 4 DDR4 SDRAM, organized as 512M x 64 bits and (BC4) modes 8 bits additional for ECC. Bi-directional Differential Data Strobe (DQS) This synchronous device operates at a maximum DLL aligns DQ and DQS transitions with CK transfer rate of up to 2400 MT/s (DDR4-2400), for an aggregate data rate of 153.6Gbps. The module Commands entered on each positive CK is designed to comply with the key DDR4 SDRAM transition features including: (1) posted CAS by Data and data mask are referenced to both programmable additive latency, (2) On Die edges of a differential data strobe pair Termination, (3) programmable driver strength (Double data rate) data, (4) clock rate of 1200MHz. Programmable on-die termination (ODT) All the control and address inputs are Refresh: Self-refresh, Auto refresh and synchronized with a pair of externally supplied Partial array Self-refresh differential clocks. Inputs are latched at the cross ZQ calibration for DQ drive and ODT point of differential clocks (CK_t rising and CK_c falling). All I/Os are synchronized with a pair of Asynchronous RESET pin for Power-up initialization and reset function bidirectional differential data strobes (DQS_t and DQS_c) in a source synchronous fashion.
    [Show full text]
  • Datakommunikasjon Og Maskinvare
    Institutt for økonomi og IT Datakommunikasjon og maskinvare Kompendium til emnet 6105N Windows Server og datanett Jon Kvisli Universitetet i Sørøst-Norge, Januar 2020 © Jon Kvisli, 2020 Windows® og Windows Server® er varemerker registrert av Microsoft Corporation. Det må ikke kopieres fra dette heftet ut over det som er tillatt etter bestemmelser i «Lov om opphavsrett til åndsverk», og avtaler om kopiering inngått med Kopinor. Forsidebilde: Colourbox Sats: Jon Kvisli 2 Innhold 1. GRUNNPRINSIPPER I DATAKOMMUNIKASJON .......................................................................... 4 1.1. Punkt-til-punkt kommunikasjon ................................................................................................................ 4 1.2. Kommunikasjonsbusser ............................................................................................................................. 8 1.3. Signalering ................................................................................................................................................ 10 1.4. Dempning, støy og forvrengning.............................................................................................................. 14 1.5. Digitale og analoge signaler ..................................................................................................................... 16 1.6. Noen kommunikasjonsstandarder ........................................................................................................... 17 1.7. Sammendrag ...........................................................................................................................................
    [Show full text]
  • AN5097, Hardware and Layout Design Considerations for DDR4
    NXP Semiconductors Document Number: AN5097 Application Note Rev. 1, 07/2016 Hardware and Layout Design Considerations for DDR4 SDRAM Memory Interfaces Contents 1 About this document 1 About this document................................................. 1 2 Recommended resources................... ....................... 1 This document provides general hardware and layout considerations and guidelines for hardware engineers 3 DDR4 design checklist................... ..........................2 implementing a DDR4 memory subsystem. 4 Selecting termination resistors......... ........................ 9 The rules and recommendations in this document serve as an 5 Avoiding VREF noise problems........ .......................9 initial baseline for board designers to begin their specific implementations, such as fly-by memory topology. 6 Calculating VTT current.................. ........................ 9 NOTE 7 Layout guidelines for DDR signal It is strongly recommended that the board groups..................................................... ................ 10 designer verifies that all aspects, such as 8 Using simulation models................. .......................15 signal integrity, electrical timings, and so on, are addressed by using simulation 9 Revision history...................................................... 16 models before board fabrication. A LS1088A DDR layout routing break out........................................................................... 17 B DRAM reset signal considerations......................... 23 2 Recommended
    [Show full text]
  • Dynamic Rams from Asynchrounos to DDR4
    Dynamic RAMs From Asynchrounos to DDR4 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 10 Feb 2013 17:59:42 UTC Contents Articles Dynamic random-access memory 1 Synchronous dynamic random-access memory 14 DDR SDRAM 27 DDR2 SDRAM 33 DDR3 SDRAM 37 DDR4 SDRAM 43 References Article Sources and Contributors 48 Image Sources, Licenses and Contributors 49 Article Licenses License 50 Dynamic random-access memory 1 Dynamic random-access memory Dynamic random-access memory (DRAM) is a type of random-access memory that stores each bit of data in a separate capacitor within an integrated circuit. The capacitor can be either charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. Since capacitors leak charge, the information eventually fades unless the capacitor charge is refreshed periodically. Because of this refresh requirement, it is a dynamic memory as opposed to SRAM and other static memory. The main memory (the "RAM") in personal computers is dynamic RAM (DRAM). It is the RAM in laptop and workstation computers as well as some of the RAM of video game consoles. The advantage of DRAM is its structural simplicity: only one transistor and a capacitor are required per bit, compared to four or six transistors in SRAM. This allows DRAM to reach very high densities. Unlike flash memory, DRAM is volatile memory (cf. non-volatile memory), since it loses its data quickly when power is removed. The transistors and capacitors used are extremely small; billions can fit on a single memory chip.
    [Show full text]