University of Southampton Research Repository
Total Page:16
File Type:pdf, Size:1020Kb
University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] University of Southampton Faculty of Engineering and Physical Sciences School of Engineering Soil Parameters for Modelling Critical Velocity Effects of Railways by Alice Duley Thesis for the degree of Engineering Doctorate (EngD) December 2018 University of Southampton Abstract Faculty of Engineering and Physical Sciences School of Engineering Thesis for the degree of Engineering Doctorate Soil Parameters for Modelling Critical Velocity Effects of Railways by Alice Jane Frances Duley In many countries high speed rail is playing a growing role in improving the capacity, availability and carbon cost of national infrastructure. Higher speeds require straighter railway alignments, which often means crossing areas of soft ground that have historically been avoided. Due to their low ground-borne surface wave speeds, there is a greater likelihood in such areas of the train passage resulting in critical velocity effects – a phenomenon in which excessive ground and track movement and vibration occurs. This can cause extensive damage, and may result in a forced reduction of train speeds. The aim of this research is to assess methods of determining appropriate soil parameters for use in simple elasticity-based models for the prediction of critical velocity effects on railways. After a review of existing knowledge, the research consists of field measurements, laboratory experiments and modelling. This research focuses around two case study sites on the UK rail network. Soil samples were extracted from each site, and tested in resonant column and triaxial equipment, to investigate their strain-dependent stiffness and damping. This involved testing on soil types for which there is little published data, including highly organic silts. The results are compared with measurements taken in situ, including seismic analysis and heavy probe tests. A linear elastic model, MOTIV, of train-induced vibration is used to investigate the key soil and model parameters required for critical velocity analysis, as well as to assess the importance of the non-linearity of soil stiffness and damping with strain. It is clear that the use of strain- degraded soil parameters, for example through the use of an equivalent linear model, is essential. Recommendations are made for the best methods to obtain the relevant data, from which reliable critical velocity predictions can be made using linear soil models. Table of Contents Table of Contents Table of Contents .......................................................................................................... i List of Tables ................................................................................................................ vii List of Figures ...............................................................................................................ix List of Accompanying Materials .................................................................................. xxi Research Thesis: Declaration of Authorship .............................................................. xxiii Acknowledgements ................................................................................................... xxv List of Symbols and Abbreviations............................................................................ xxvii Chapter 1 Introduction ............................................................................................. 33 1.1 Background ............................................................................................................... 33 1.2 Research Aims and Methodology ............................................................................ 36 1.2.1 Aims and objectives ......................................................................................... 36 1.2.2 Methodology .................................................................................................... 37 1.3 Thesis overview ........................................................................................................ 37 1.4 Original contributions of thesis ................................................................................ 38 Chapter 2 Background .............................................................................................. 41 2.1 Critical velocity effects – Causes, measurements and modelling ............................ 41 2.1.1 An introduction to critical velocity effects ....................................................... 41 2.1.2 Rayleigh waves and other causes..................................................................... 42 2.1.3 Modelling critical velocity effects .................................................................... 45 2.2 Measuring dynamic properties of soils .................................................................... 55 2.2.1 Soil stiffness and damping ................................................................................ 55 2.2.2 Site and laboratory equipment overview ........................................................ 57 2.2.3 Anisotropy considerations ............................................................................... 59 Chapter 3 Modelling Background ............................................................................. 61 3.1 MOTIV model theory and past work ........................................................................ 61 3.1.1 Background and theory .................................................................................... 61 3.2 Parametric study ...................................................................................................... 63 i Table of Contents 3.2.1 Basic model parameters .................................................................................. 63 3.2.2 Geometries ...................................................................................................... 67 3.2.3 Model dimensions ........................................................................................... 75 3.2.4 Track and vehicle parameters .......................................................................... 77 3.2.5 Ground parameters ......................................................................................... 78 3.2.6 Impact of saturation levels .............................................................................. 81 3.2.7 Parametric study conclusion ............................................................................ 84 3.3 More detailed modelling ......................................................................................... 85 3.3.1 Impact of more detailed model geometry ...................................................... 86 3.3.2 Impact of thickness of stiffer surface layer ..................................................... 89 3.3.3 Impact of thickness of lower softer layer ........................................................ 91 3.3.4 Impact of stiffness ratios of soil layers ............................................................ 93 3.3.5 Assumptions and compromises ....................................................................... 95 Chapter 4 Site and Experimental Methods ................................................................ 97 4.1 In situ site measurements ........................................................................................ 97 4.1.1 Penetration tests.............................................................................................. 97 4.1.2 Seismic measurements .................................................................................... 97 4.2 Site sampling ............................................................................................................ 98 4.2.1 Sampling techniques and considerations ........................................................ 98 4.3 The resonant column ............................................................................................. 103 4.3.1 Overview and adaptations ............................................................................. 103 4.3.2 Theoretical considerations for the resonant column .................................... 108 4.3.3 Shear moduli and strain measurement ......................................................... 112 4.3.4 Resonant column calibration ......................................................................... 114 4.3.5 Resonant column test procedure .................................................................. 118 4.3.6 Assumptions ................................................................................................... 120 4.4 The triaxial