Architecture of Intel8086/8088
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
8088 8-Bit Hmos Microprocessor 8088 8088-2
8088 8-BIT HMOS MICROPROCESSOR 8088/8088-2 Y 8-Bit Data Bus Interface Y Byte, Word, and Block Operations Y 16-Bit Internal Architecture Y 8-Bit and 16-Bit Signed and Unsigned Arithmetic in Binary or Decimal, Y Direct Addressing Capability to 1 Mbyte of Memory Including Multiply and Divide Y Two Clock Rates: Y Direct Software Compatibility with 8086 CPU Ð 5 MHz for 8088 Ð 8 MHz for 8088-2 Y 14-Word by 16-Bit Register Set with Symmetrical Operations Y Available in EXPRESS Ð Standard Temperature Range Y 24 Operand Addressing Modes Ð Extended Temperature Range The Intel 8088 is a high performance microprocessor implemented in N-channel, depletion load, silicon gate technology (HMOS-II), and packaged in a 40-pin CERDIP package. The processor has attributes of both 8- and 16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and periph- erals. 231456±2 Figure 2. 8088 Pin Configuration 231456±1 Figure 1. 8088 CPU Functional Block Diagram August 1990 Order Number: 231456-006 8088 Table 1. Pin Description The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The ``local bus'' in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers). Symbol Pin No. Type Name and Function AD7±AD0 9±16 I/O ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1) and data (T2, T3, Tw, T4) bus. These lines are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus ``hold acknowledge''. -
Computer Organization and Architecture Designing for Performance Ninth Edition
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. -
Over View of Microprocessor 8085 and Its Application
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 6, Ver. II (Nov - Dec .2015), PP 09-14 www.iosrjournals.org Over view of Microprocessor 8085 and its application Kimasha Borah Assistant Professor, Centre for Computer Studies Centre for Computer Studies, Dibrugarh University, Dibrugarh, Assam, India Abstract: Microprocessor is a program controlled semiconductor device (IC), which fetches, decode and executes instructions. It is versatile in application and is flexible to some extent. Nowadays, modern microprocessors can perform extremely sophisticated operations in areas such as meteorology, aviation, nuclear physics and engineering, and take up much less space as well as delivering superior performance Here is a brief review of microprocessor and its various application Key words: Semi Conductor, Integrated Circuits, CPU, NMOS ,PMOS, VLSI I. Introduction: Microprocessor is derived from two words micro and processor. Micro means small, tiny and processor means which processes something. It is a single Very Large Scale of Integration (VLSI) chip that incorporates all functions of central processing unit (CPU) fabricated on a single Integrated Circuits (ICs) (1).Some other units like caches, pipelining, floating point processing arithmetic and superscaling units are additionally present in the microprocessor and that results in increasing speed of operation.8085,8086,8088 are some examples of microprocessors(2). The technology used for microprocessor is N type metal oxide semiconductor(NMOS)(3). Basic operations of microprocessor are fetching instructions from memory ,decoding and executing them ie it takes data or operand from input device, perform arithmetic and logical operations and store results in required location or send result to output devices(1).Word size identifies the microprocessor.E.g. -
Appendix D an Alternative to RISC: the Intel 80X86
D.1 Introduction D-2 D.2 80x86 Registers and Data Addressing Modes D-3 D.3 80x86 Integer Operations D-6 D.4 80x86 Floating-Point Operations D-10 D.5 80x86 Instruction Encoding D-12 D.6 Putting It All Together: Measurements of Instruction Set Usage D-14 D.7 Concluding Remarks D-20 D.8 Historical Perspective and References D-21 D An Alternative to RISC: The Intel 80x86 The x86 isn’t all that complex—it just doesn’t make a lot of sense. Mike Johnson Leader of 80x86 Design at AMD, Microprocessor Report (1994) © 2003 Elsevier Science (USA). All rights reserved. D-2 I Appendix D An Alternative to RISC: The Intel 80x86 D.1 Introduction MIPS was the vision of a single architect. The pieces of this architecture fit nicely together and the whole architecture can be described succinctly. Such is not the case of the 80x86: It is the product of several independent groups who evolved the architecture over 20 years, adding new features to the original instruction set as you might add clothing to a packed bag. Here are important 80x86 milestones: I 1978—The Intel 8086 architecture was announced as an assembly language– compatible extension of the then-successful Intel 8080, an 8-bit microproces- sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide. Whereas the 8080 was a straightforward accumulator machine, the 8086 extended the architecture with additional registers. Because nearly every reg- ister has a dedicated use, the 8086 falls somewhere between an accumulator machine and a general-purpose register machine, and can fairly be called an extended accumulator machine. -
Class-Action Lawsuit
Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys. -
A Simulator for the Intel 8086 Microprocessor
Rochester Institute of Technology RIT Scholar Works Theses 1988 A Simulator for the Intel 8086 microprocessor William A. Chapman Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Chapman, William A., "A Simulator for the Intel 8086 microprocessor" (1988). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A SIMULATOR FOR THE INTEL 8086 MICROPROCESSOR by William A. Chapman A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Approved by: Professor Ken Hsu ':"(':":T~h":"e~sJ.';":·S=--=-A-d'=""v-i:-s-o-r-)------- Professor James R. Schueckler Professor _~~ _ Professor __~__:--:~-=- _ (Department Head) DEPARTMENT OF ELECTRICAL ENGINEERING COLLEGE OF ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK MAY, 1988 Abstract This project was originally suggested by J. Schueckler as an aid to teaching students the Intel 8086 Assembly Language. The need for such a tool becomes apparent when one considers the expense of providing students with dedicated hardware that rapidly becomes obsolete, but a Simulator which could be easily updated and runs on a general purpose or timesharing computer system would be accessible to many students for a fraction of the cost. The intended use of the Simulator therefore dictated that it precisely model the hardware, be available on a multiuser system and run as efficiently as possible. -
8086 16-Bit Hmos Microprocessor 8086/8086-2/8086-1
8086 16-BIT HMOS MICROPROCESSOR 8086/8086-2/8086-1 Y Direct Addressing Capability 1 MByte Y Range of Clock Rates: of Memory 5 MHz for 8086, 8 MHz for 8086-2, Y Architecture Designed for Powerful Assembly Language and Efficient High 10 MHz for 8086-1 Level Languages Y MULTIBUS System Compatible Interface Y 14 Word,by 16-Bit Register Set with Symmetrical Operations Y Available in EXPRESS –Standard Temperature Range Y 24 Operand Addressing Modes –Extended Temperature Range Y Bit,Byte,Word,and Block Operations Y Available in 40-Lead Cerdip and Plastic Y 8 and 16-Bit Signed and Unsigned Package Arithmetic in Binary or Decimal (See Packaging Spec.Order ›231369) Including Multiply and Divide The Intel 8086 high performance 16-bit CPU is available in three clock rates:5,8 and 10 MHz.The CPU is implemented in N-Channel,depletion load,silicon gate technology (HMOS-III),and packaged in a 40-pin CERDIP or plastic package.The 8086 operates in both single processor and multiple processor configurations to achieve high performance levels. 231455–2 40 Lead Figure 2.8086 Pin Configuration Figure 1.8086 CPU Block Diagram 231455–1 September 1990 Order Number:231455-005 8086 Table 1.Pin Description The following pin function descriptions are for 8086 systems in either minimum or maximum mode.The ‘‘Local Bus’’ in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional bus buffers). Symbol Pin No.Type Name and Function AD15–AD0 2–16,39 I/O ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1),and data (T2,T3,TW,T4) bus.A0 is analogous to BHE for the lower byte of the data bus,pins D7–D0.It is LOW during T1 when a byte is to be transferred on the lower portion of the bus in memory or I/O operations.Eight-bit oriented devices tied to the lower half would normally use A0 to condition chip select functions.(See BHE.) These lines are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus ‘‘hold acknowledge’’. -
CISC Processor - Intel X86
Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO CISC Processor - Intel x86 This chapter will introduce the CISC processors evolution. We will try to illustrate the history on one typical processor, because the comparison of multiple processors simultaneously would not be clear for readers. But the selection of one typical processor is complicated due to a variety of products and manufactures in the past 30 years. We have decided to describe in this presentation one of the best- known and longest mass-produced processors in existence. We definitely do not want to say that it is the best technology or that these are processors with the highest performance! The Intel x86 processors are the selected product line. Intel 8080 (Year-Technology-Transistors-Frequency-Data bus-Address Bus) Y: 1974 T: NMOS 6μm Tr: 6000 F: 2MHz D: 8b A: 16b This 8 bit processor is not directly the first member of x86 series, but it can not be skipped. It is one of the first commercially successful microprocessors. This microprocessor became the basis for a number of the first single-board computers and its instruction set inspired other manufacturers to develop 8-bit processors. -
Advanced Architecture Intel Microprocessor History
Advanced Architecture Intel microprocessor history Computer Organization and Assembly Languages Yung-Yu Chuang with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne Early Intel microprocessors The IBM-AT • Intel 8080 (1972) • Intel 80286 (1982) – 64K addressable RAM – 16 MB addressable RAM – 8-bit registers – Protected memory – CP/M operating system – several times faster than 8086 – 5,6,8,10 MHz – introduced IDE bus architecture – 29K transistors – 80287 floating point unit • Intel 8086/8088 (1978) my first computer (1986) – Up to 20MHz – IBM-PC used 8088 – 134K transistors – 1 MB addressable RAM –16-bit registers – 16-bit data bus (8-bit for 8088) – separate floating-point unit (8087) – used in low-cost microcontrollers now 3 4 Intel IA-32 Family Intel P6 Family • Intel386 (1985) • Pentium Pro (1995) – 4 GB addressable RAM – advanced optimization techniques in microcode –32-bit registers – More pipeline stages – On-board L2 cache – paging (virtual memory) • Pentium II (1997) – Up to 33MHz – MMX (multimedia) instruction set • Intel486 (1989) – Up to 450MHz – instruction pipelining • Pentium III (1999) – Integrated FPU – SIMD (streaming extensions) instructions (SSE) – 8K cache – Up to 1+GHz • Pentium (1993) • Pentium 4 (2000) – Superscalar (two parallel pipelines) – NetBurst micro-architecture, tuned for multimedia – 3.8+GHz • Pentium D (2005, Dual core) 5 6 IA32 Processors ARM history • Totally Dominate Computer Market • 1983 developed by Acorn computers • Evolutionary Design – To replace 6502 in -
How Microprocessors Work E 1 of 64 ZM
How Microprocessors Work e 1 of 64 ZM How Microprocessors Work ZAHIDMEHBOOB +923215020706 [email protected] 2003 BS(IT) PRESTION UNIVERSITY How Microprocessors Work The computer you are using to read this page uses a microprocessor to do its work. The microprocessor is the heart of any normal computer, whether it is a desktop machine, a server or a laptop. The microprocessor you are using might be a Pentium, a K6, a PowerPC, a Sparc or any of the many other brands and types of microprocessors, but they all do approximately the same thing in approximately the same way. If you have ever wondered what the microprocessor in your computer is doing, or if you have ever wondered about the differences between types of microprocessors, then read on. Microprocessor History A microprocessor -- also known as a CPU or central processing unit -- is a complete computation engine that is fabricated on a single chip. The first microprocessor was the Intel [email protected] +923215020706 (2003) How Microprocessors Work e 2 of 64 ZM 4004, introduced in 1971. The 4004 was not very powerful -- all it could do was add and subtract, and it could only do that 4 bits at a time. But it was amazing that everything was on one chip. Prior to the 4004, engineers built computers either from collections of chips or from discrete components (transistors wired one at a time). The 4004 powered one of the first portable electronic calculators. The first microprocessor to make it into a home computer was the Intel 8080, a complete 8- bit computer on one chip, introduced in 1974. -
Communication Theory II
Microprocessor (COM 9323) Lecture 2: Review on Intel Family Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17th, 2016 1 Text Book/References Textbook: 1. The Intel Microprocessors, Architecture, Programming and Interfacing, 8th edition, Barry B. Brey, Prentice Hall, 2009 2. Assembly Language for x86 processors, 6th edition, K. R. Irvine, Prentice Hall, 2011 References: 1. Computer Architecture: A Quantitative Approach, 5th edition, J. Hennessy, D. Patterson, Elsevier, 2012. 2. The 80x86 Family, Design, Programming and Interfacing, 3rd edition, Prentice Hall, 2002 3. The 80x86 IBM PC and Compatible Computers, Assembly Language, Design, and Interfacing, 4th edition, M.A. Mazidi and J.G. Mazidi, Prentice Hall, 2003 2 Lecture Objectives 1. Provide an overview of the various 80X86 and Pentium family members 2. Define the contents of the memory system in the personal computer 3. Convert between binary, decimal, and hexadecimal numbers 4. Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and ASCII data 5. Understand basic computer terminology (bit, byte, data, real memory system, protected mode memory system, Windows, DOS, I/O) 3 Brief History of the Computers o1946 The first generation of Computer ENIAC (Electrical and Numerical Integrator and Calculator) was started to be used based on the vacuum tube technology, University of Pennsylvania o1970s entire CPU was put in a single chip. (1971 the first microprocessor of Intel 4004 (4-bit data bus and 2300 transistors and 45 instructions) 4 Brief History of the Computers (cont’d) oLate 1970s Intel 8080/85 appeared with 8-bit data bus and 16-bit address bus and used from traffic light controllers to homemade computers (8085: 246 instruction set, RISC*) o1981 First PC was introduced by IBM with Intel 8088 (CISC**: over 20,000 instructions) microprocessor oMotorola emerged with 6800. -
Programmable Digital Microcircuits - a Survey with Examples of Use
- 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention.