Intel Architecture Software Developer's Manual

Total Page:16

File Type:pdf, Size:1020Kb

Intel Architecture Software Developer's Manual Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Reference NOTE: The Intel Architecture Software Developer’s Manual consists of three volumes: Basic Architecture, Order Number 243190; Instruction Set Reference, Order Number 243191; and the System Programming Guide, Order Number 243192. Please refer to all three volumes when evaluating your design needs. 1999 Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel’s Intel Architecture processors (e.g., Pentium®, Pentium® II, Pentium® III, and Pentium® Pro processors) may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's literature center at http://www.intel.com. COPYRIGHT © INTEL CORPORATION 1999 *THIRD-PARTY BRANDS AND NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. TABLE OF CONTENTS CHAPTER 1 ABOUT THIS MANUAL 1.1. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL, VOLUME 2: INSTRUCTION SET REFERENCE 1-1 1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL, VOLUME 1: BASIC ARCHITECTURE 1-2 1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL, VOLUME 3: SYSTEM PROGRAMMING GUIDE 1-3 1.4. NOTATIONAL CONVENTIONS. 1-5 1.4.1. Bit and Byte Order. .1-5 1.4.2. Reserved Bits and Software Compatibility . .1-6 1.4.3. Instruction Operands . .1-7 1.4.4. Hexadecimal and Binary Numbers . .1-7 1.4.5. Segmented Addressing . .1-7 1.4.6. Exceptions. .1-8 1.5. RELATED LITERATURE . 1-9 CHAPTER 2 INSTRUCTION FORMAT 2.1. GENERAL INSTRUCTION FORMAT . 2-1 2.2. INSTRUCTION PREFIXES . 2-1 2.3. OPCODE . 2-2 2.4. MODR/M AND SIB BYTES . 2-2 2.5. DISPLACEMENT AND IMMEDIATE BYTES . 2-3 2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB BYTES . 2-3 CHAPTER 3 INSTRUCTION SET REFERENCE 3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES . 3-1 3.1.1. Instruction Format . .3-1 3.1.1.1. Opcode Column . .3-2 3.1.1.2. Instruction Column . .3-3 3.1.1.3. Description Column . .3-5 3.1.1.4. Description . .3-5 3.1.2. Operation. .3-6 3.1.3. Intel C/C++ Compiler Intrinsics Equivalent . .3-9 3.1.3.1. The Intrinsics API . .3-9 3.1.3.2. MMX™ Technology Intrinsics. .3-10 3.1.3.3. SIMD Floating-Point Intrinsics . .3-10 3.1.4. Flags Affected . .3-11 3.1.5. FPU Flags Affected . .3-12 3.1.6. Protected Mode Exceptions. .3-12 3.1.7. Real-Address Mode Exceptions . .3-12 3.1.8. Virtual-8086 Mode Exceptions. .3-13 3.1.9. Floating-Point Exceptions . .3-14 3.1.10. SIMD Floating-Point Exceptions - Streaming SIMD Extensions Only . .3-14 iii TABLE OF CONTENTS 3.2. INSTRUCTION REFERENCE . 3-16 AAA—ASCII Adjust After Addition . .3-17 AAD—ASCII Adjust AX Before Division . .3-18 AAM—ASCII Adjust AX After Multiply . .3-19 AAS—ASCII Adjust AL After Subtraction. .3-20 ADC—Add with Carry. .3-21 ADD—Add . .3-23 ADDPS—Packed Single-FP Add . .3-25 ADDSS—Scalar Single-FP Add . .3-27 AND—Logical AND . .3-30 ANDNPS—Bit-wise Logical And Not For Single-FP. .3-32 ANDPS—Bit-wise Logical And For Single FP . .3-34 ARPL—Adjust RPL Field of Segment Selector . .3-36 BOUND—Check Array Index Against Bounds . .3-38 BSF—Bit Scan Forward . .3-40 BSR—Bit Scan Reverse. .3-42 BSWAP—Byte Swap . .3-44 BT—Bit Test . .3-45 BTC—Bit Test and Complement . .3-47 BTR—Bit Test and Reset . .3-49 BTS—Bit Test and Set . .3-51 CALL—Call Procedure. .3-53 CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword . .3-64 CDQ—Convert Double to Quad . .3-65 CLC—Clear Carry Flag . .3-66 CLD—Clear Direction Flag. .3-67 CLI—Clear Interrupt Flag . .3-68 CLTS—Clear Task-Switched Flag in CR0 . .3-70 CMC—Complement Carry Flag . .3-71 CMOVcc—Conditional Move . .3-72 CMP—Compare Two Operands . .3-76 CMPPS—Packed Single-FP Compare . .3-78 CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands. .3-87 CMPSS—Scalar Single-FP Compare . .3-90 CMPXCHG—Compare and Exchange. .3-100 CMPXCHG8B—Compare and Exchange 8 Bytes . .3-102 COMISS—Scalar Ordered Single-FP Compare and Set EFLAGS . .3-104 CPUID—CPU Identification . .3-111 CVTPI2PS—Packed Signed INT32 to Packed Single-FP Conversion . .3-119 CVTPS2PI—Packed Single-FP to Packed INT32 Conversion. .3-123 CVTSI2SS—Scalar Signed INT32 to Single-FP Conversion . .3-127 CVTSS2SI—Scalar Single-FP to Signed INT32 Conversion . .3-130 CVTTPS2PI—Packed Single-FP to Packed INT32 Conversion (Truncate). .3-133 CVTTSS2SI—Scalar Single-FP to Signed INT32 Conversion (Truncate) . .3-137 CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to Quadword. ..
Recommended publications
  • Intel® IA-64 Architecture Software Developer's Manual
    Intel® IA-64 Architecture Software Developer’s Manual Volume 1: IA-64 Application Architecture Revision 1.1 July 2000 Document Number: 245317-002 THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel® IA-64 processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800- 548-4725, or by visiting Intel’s website at http://developer.intel.com/design/litcentr.
    [Show full text]
  • Pdp11-40.Pdf
    processor handbook digital equipment corporation Copyright© 1972, by Digital Equipment Corporation DEC, PDP, UNIBUS are registered trademarks of Digital Equipment Corporation. ii TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1·1 1.1 GENERAL ............................................. 1·1 1.2 GENERAL CHARACTERISTICS . 1·2 1.2.1 The UNIBUS ..... 1·2 1.2.2 Central Processor 1·3 1.2.3 Memories ........... 1·5 1.2.4 Floating Point ... 1·5 1.2.5 Memory Management .............................. .. 1·5 1.3 PERIPHERALS/OPTIONS ......................................... 1·5 1.3.1 1/0 Devices .......... .................................. 1·6 1.3.2 Storage Devices ...................................... .. 1·6 1.3.3 Bus Options .............................................. 1·6 1.4 SOFTWARE ..... .... ........................................... ............. 1·6 1.4.1 Paper Tape Software .......................................... 1·7 1.4.2 Disk Operating System Software ........................ 1·7 1.4.3 Higher Level Languages ................................... .. 1·7 1.5 NUMBER SYSTEMS ..................................... 1-7 CHAPTER 2 SYSTEM ARCHITECTURE. 2-1 2.1 SYSTEM DEFINITION .............. 2·1 2.2 UNIBUS ......................................... 2-1 2.2.1 Bidirectional Lines ...... 2-1 2.2.2 Master-Slave Relation .. 2-2 2.2.3 Interlocked Communication 2-2 2.3 CENTRAL PROCESSOR .......... 2-2 2.3.1 General Registers ... 2-3 2.3.2 Processor Status Word ....... 2-4 2.3.3 Stack Limit Register 2-5 2.4 EXTENDED INSTRUCTION SET & FLOATING POINT .. 2-5 2.5 CORE MEMORY . .... 2-6 2.6 AUTOMATIC PRIORITY INTERRUPTS .... 2-7 2.6.1 Using the Interrupts . 2-9 2.6.2 Interrupt Procedure 2-9 2.6.3 Interrupt Servicing ............ .. 2-10 2.7 PROCESSOR TRAPS ............ 2-10 2.7.1 Power Failure ..............
    [Show full text]
  • Over View of Microprocessor 8085 and Its Application
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 6, Ver. II (Nov - Dec .2015), PP 09-14 www.iosrjournals.org Over view of Microprocessor 8085 and its application Kimasha Borah Assistant Professor, Centre for Computer Studies Centre for Computer Studies, Dibrugarh University, Dibrugarh, Assam, India Abstract: Microprocessor is a program controlled semiconductor device (IC), which fetches, decode and executes instructions. It is versatile in application and is flexible to some extent. Nowadays, modern microprocessors can perform extremely sophisticated operations in areas such as meteorology, aviation, nuclear physics and engineering, and take up much less space as well as delivering superior performance Here is a brief review of microprocessor and its various application Key words: Semi Conductor, Integrated Circuits, CPU, NMOS ,PMOS, VLSI I. Introduction: Microprocessor is derived from two words micro and processor. Micro means small, tiny and processor means which processes something. It is a single Very Large Scale of Integration (VLSI) chip that incorporates all functions of central processing unit (CPU) fabricated on a single Integrated Circuits (ICs) (1).Some other units like caches, pipelining, floating point processing arithmetic and superscaling units are additionally present in the microprocessor and that results in increasing speed of operation.8085,8086,8088 are some examples of microprocessors(2). The technology used for microprocessor is N type metal oxide semiconductor(NMOS)(3). Basic operations of microprocessor are fetching instructions from memory ,decoding and executing them ie it takes data or operand from input device, perform arithmetic and logical operations and store results in required location or send result to output devices(1).Word size identifies the microprocessor.E.g.
    [Show full text]
  • Appendix D an Alternative to RISC: the Intel 80X86
    D.1 Introduction D-2 D.2 80x86 Registers and Data Addressing Modes D-3 D.3 80x86 Integer Operations D-6 D.4 80x86 Floating-Point Operations D-10 D.5 80x86 Instruction Encoding D-12 D.6 Putting It All Together: Measurements of Instruction Set Usage D-14 D.7 Concluding Remarks D-20 D.8 Historical Perspective and References D-21 D An Alternative to RISC: The Intel 80x86 The x86 isn’t all that complex—it just doesn’t make a lot of sense. Mike Johnson Leader of 80x86 Design at AMD, Microprocessor Report (1994) © 2003 Elsevier Science (USA). All rights reserved. D-2 I Appendix D An Alternative to RISC: The Intel 80x86 D.1 Introduction MIPS was the vision of a single architect. The pieces of this architecture fit nicely together and the whole architecture can be described succinctly. Such is not the case of the 80x86: It is the product of several independent groups who evolved the architecture over 20 years, adding new features to the original instruction set as you might add clothing to a packed bag. Here are important 80x86 milestones: I 1978—The Intel 8086 architecture was announced as an assembly language– compatible extension of the then-successful Intel 8080, an 8-bit microproces- sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide. Whereas the 8080 was a straightforward accumulator machine, the 8086 extended the architecture with additional registers. Because nearly every reg- ister has a dedicated use, the 8086 falls somewhere between an accumulator machine and a general-purpose register machine, and can fairly be called an extended accumulator machine.
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • The Microarchitecture of the Pentium 4 Processor
    The Microarchitecture of the Pentium 4 Processor Glenn Hinton, Desktop Platforms Group, Intel Corp. Dave Sager, Desktop Platforms Group, Intel Corp. Mike Upton, Desktop Platforms Group, Intel Corp. Darrell Boggs, Desktop Platforms Group, Intel Corp. Doug Carmean, Desktop Platforms Group, Intel Corp. Alan Kyker, Desktop Platforms Group, Intel Corp. Patrice Roussel, Desktop Platforms Group, Intel Corp. Index words: Pentium® 4 processor, NetBurst™ microarchitecture, Trace Cache, double-pumped ALU, deep pipelining provides an in-depth examination of the features and ABSTRACT functions of the Intel NetBurst microarchitecture. This paper describes the Intel® NetBurst™ ® The Pentium 4 processor is designed to deliver microarchitecture of Intel’s new flagship Pentium 4 performance across applications where end users can truly processor. This microarchitecture is the basis of a new appreciate and experience its performance. For example, family of processors from Intel starting with the Pentium it allows a much better user experience in areas such as 4 processor. The Pentium 4 processor provides a Internet audio and streaming video, image processing, substantial performance gain for many key application video content creation, speech recognition, 3D areas where the end user can truly appreciate the applications and games, multi-media, and multi-tasking difference. user environments. The Pentium 4 processor enables real- In this paper we describe the main features and functions time MPEG2 video encoding and near real-time MPEG4 of the NetBurst microarchitecture. We present the front- encoding, allowing efficient video editing and video end of the machine, including its new form of instruction conferencing. It delivers world-class performance on 3D cache called the Execution Trace Cache.
    [Show full text]
  • A Simulator for the Intel 8086 Microprocessor
    Rochester Institute of Technology RIT Scholar Works Theses 1988 A Simulator for the Intel 8086 microprocessor William A. Chapman Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Chapman, William A., "A Simulator for the Intel 8086 microprocessor" (1988). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A SIMULATOR FOR THE INTEL 8086 MICROPROCESSOR by William A. Chapman A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Approved by: Professor Ken Hsu ':"(':":T~h":"e~sJ.';":·S=--=-A-d'=""v-i:-s-o-r-)------- Professor James R. Schueckler Professor _~~ _ Professor __~__:--:~-=- _ (Department Head) DEPARTMENT OF ELECTRICAL ENGINEERING COLLEGE OF ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK MAY, 1988 Abstract This project was originally suggested by J. Schueckler as an aid to teaching students the Intel 8086 Assembly Language. The need for such a tool becomes apparent when one considers the expense of providing students with dedicated hardware that rapidly becomes obsolete, but a Simulator which could be easily updated and runs on a general purpose or timesharing computer system would be accessible to many students for a fraction of the cost. The intended use of the Simulator therefore dictated that it precisely model the hardware, be available on a multiuser system and run as efficiently as possible.
    [Show full text]
  • 8086 16-Bit Hmos Microprocessor 8086/8086-2/8086-1
    8086 16-BIT HMOS MICROPROCESSOR 8086/8086-2/8086-1 Y Direct Addressing Capability 1 MByte Y Range of Clock Rates: of Memory 5 MHz for 8086, 8 MHz for 8086-2, Y Architecture Designed for Powerful Assembly Language and Efficient High 10 MHz for 8086-1 Level Languages Y MULTIBUS System Compatible Interface Y 14 Word,by 16-Bit Register Set with Symmetrical Operations Y Available in EXPRESS –Standard Temperature Range Y 24 Operand Addressing Modes –Extended Temperature Range Y Bit,Byte,Word,and Block Operations Y Available in 40-Lead Cerdip and Plastic Y 8 and 16-Bit Signed and Unsigned Package Arithmetic in Binary or Decimal (See Packaging Spec.Order ›231369) Including Multiply and Divide The Intel 8086 high performance 16-bit CPU is available in three clock rates:5,8 and 10 MHz.The CPU is implemented in N-Channel,depletion load,silicon gate technology (HMOS-III),and packaged in a 40-pin CERDIP or plastic package.The 8086 operates in both single processor and multiple processor configurations to achieve high performance levels. 231455–2 40 Lead Figure 2.8086 Pin Configuration Figure 1.8086 CPU Block Diagram 231455–1 September 1990 Order Number:231455-005 8086 Table 1.Pin Description The following pin function descriptions are for 8086 systems in either minimum or maximum mode.The ‘‘Local Bus’’ in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional bus buffers). Symbol Pin No.Type Name and Function AD15–AD0 2–16,39 I/O ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1),and data (T2,T3,TW,T4) bus.A0 is analogous to BHE for the lower byte of the data bus,pins D7–D0.It is LOW during T1 when a byte is to be transferred on the lower portion of the bus in memory or I/O operations.Eight-bit oriented devices tied to the lower half would normally use A0 to condition chip select functions.(See BHE.) These lines are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus ‘‘hold acknowledge’’.
    [Show full text]
  • CS61C : Machine Structures •Remember: “Load from Memory”
    inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Review Lecture 9 – Introduction to MIPS • In MIPS Assembly Language: Data Transfer & Decisions I • Registers replace C variables • One Instruction (simple operation) per line • Simpler is Better, Smaller is Faster Lecturer PSOE Dan Garcia • New Instructions: www.cs.berkeley.edu/~ddgarcia add, addi, sub Future HVD 1 TB disks! ⇒ The future of digital storage • New Registers: (past the DVD, Blu-Ray and HD DVD) C Variables: $s0 - $s7 may be the Holographic Versatile Disc. Temporary Variables: $t0 - $t7 A massive 1 TB on each (200 DVDs)! 1TB www.zdnet.com.au/news/hardware/0,2000061702,39180148,00.htm Zero: $zero CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (2) Garcia © UCB Assembly Operands: Memory Anatomy: 5 components of any Computer Registers are in the datapath of the • C variables map onto registers; what processor; if operands are in memory, about large data structures like arrays? Personal Computer we must transfer them to the processor to operate on them, and • 1 of 5 components of a computer: then transfer back to memory when done. memory contains such data structures Computer Processor Memory Devices • But MIPS arithmetic instructions only operate on registers, never directly on Control Input (“brain”) memory. Store (to) Datapath • Data transfer instructions transfer data Registers Output between registers and memory: Load (from) • Memory to register • Register to memory These are “data
    [Show full text]
  • Programmable Digital Microcircuits - a Survey with Examples of Use
    - 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention.
    [Show full text]
  • 6Th Gen Intel® Core™ Processors
    6th Generation Intel® Processor Family Specification Update Supporting the Intel® Pentium® Processor Family based on the U-Processor Supporting the 6th Generation Intel® Core™ Processor Family based on the Y-Processor September 2015 Version 1.0 Order Number: 332994-001EN Preface You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com. Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.
    [Show full text]