Silicon Integrated Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Silicon Integrated Circuits Silicon Integrated Circ-uits Much of the early technology of silicon integrated circuits grew out of the physics, chemistry, and metallurgy of discrete transistors, includinga number of key Bell Laboratories developments: oxide-masked diffusion, photolithographic methods, thermocompression bonding, and epitaxial deposition.Important Bell Laboratories innovations for integrated circuits encompassed beam lead sealed­ junction devices, ion implantation, complementary bipolar integrated circuits, the first metal-oxide-semiconductor (MOS) field-effect transistor, charge-coupled devices, and the self-aligned silicon gateMOS transistor. Also important to the complexity and power of modern integrated circuits areLaboratories Bell advances in the areas of mask making with electron beam exposure systems and computer aids to design. I. INTRODUCTION This chapter traces the development of silicon integrated circuits (SICs) in the Bell System since the mid-1950s. It is really three stories: technology development, innovation in device structures, and applications. We begin with early technology development and have intertwined the stories to show the constant and continuing interdependence of technology, device and systems needs, and opportunity. The developments encompassed Bell Laboratories people from many organizations in research, device devel­ opment, and systems development, and Western Electric personnel at its Engineering Research Center in Princeton, New Jersey and at the man­ ufacturing locations in Allentown and Reading, Pennsylvania. The development of integrated circuits (ICs) in the Bell System was aimed not only at improved performance, but at lower cost and higher reliability. The impact of ICs on telecommunications, the semiconductor and electronics industries, and on society as a whole, was profound. It started with the introduction of small-scale and medium-scale integrated (SSI and MSI) circuits during the 1960s. Even more profound changes Principal authors: J.M. Goldey, J. H. Forster, and B. T. Murphy 101 102 Engineering and Science in the Bell System occurred as the full implications unfolded for low-cost, large-scale integrated (LSI) and very large-scale integrated (VLSI) circuits, such as microprocessors, memories, and custom circuits tailored for specific applications. II. EARLY TECHNOLOGY DEVELOPMENTS SIC technology is a complex composite of chemical, electronic., me­ chanical, metallurgical, and optical technologies. It is, nevertheless, not a new technology unto itself, but it is part of an evolving silicon semiconductor device technology, which initially supported transistors and diodes only. The history of this technology up to the early 1960s, when discrete tran­ sistors reached a state of maturity, is described in detail in Chapter 1. Since then, SICs have dominated the evolution of the technology,. as covered in this chapter. However, it would be difficult, if not impossible, to describe the history of SIC technology without summarizing certain parts of the preceding technology, since most of the basic innovations used to achieve complex SI Cs were initially conceived as a means for improving transistors. While many aspects of SIC technology are based on Bell Laboratories research and development, this is not to imply that other organizations did not make significant contributions, for indeed they did. Notable among these companies were Texas Instruments and Fairchild Industries, and somewhat later, Intel. It was J. S. Kilby at Texas Instruments who first recognized that silicon technology could produce in one wafer of silicon not only transistors and diodes, but also resistors and capacitors, and that by interconnecting these elements, circuit functions could be realized. 1 R. N. Noyce at Fairchild contributed the idea of using deposited aluminum films on a planar structure to form the interconnections. 2 These early developments were chronicled in greater detail in the IEEE Spectrumin 1976-a truly interesting story. 3 The work led to the first commercial offering of production ICs in 1961 by both Texas Instruments and Fair­ child. The initial applications were almost exclusively for military purposes; the military funded much of the early IC research and development work. Most Bell Laboratories work, like that of Fairchild, however, was not government funded. In this chapter, we restrict ourselves, with a few exceptions, to a review of Bell Laboratories work, and begin with an overview of certain relevant features of transistor technology. Figure 2-1 shows a cross section of a simple bipolar SIC consisting of a diode, transistor, and diffused resistor, interconnected by thin metal films deposited on an insulating layer over the silicon. Note in the drawing that there are multiple layers of both n-doped and p-doped material, and that interconnection is provided by well-defined paths of metal connected to the silicon through holes defined in the insulator. A key process in SIC technology is the introduction of dopant impuirities into the silicon-the right amount in the right place-to form active and Silicon Integrated Circuits 103 SILICON NITRIDE/ METALIZATION, ' /_..-SI LICON OIOXIDE E;;:::;~ALr •.•... LAYER -i--~-----,..-, n+ SUBSTRATE,.__p-TYPE ___________________ _ Fig. 2-1. Silicon bipolar IC schematic with a diode at left, transistor at the c,enter, and diffused resistor at right. There are multiple layers of both n-doped and p-doped material, and interconnections are provided by well-defined paths of metal connected to the silicon through holes defined in the SiN over SiO 2 insulating film. Electrical isolation between the circuit elements is achieved by p-type diffused regions extending from the surface to the p-type substrate. passive components. Basic to this operation is the oxide-masked diffusion process. The pioneering work on diffusion for silicon devices was carried 4 5 out by C. S. Fuller and J. A. Ditzenberger. ' In this process, impurities, generally in vapor form, surrounding the silicon at high temperature, enter and then move into the semiconductor at a rate fast enough to be practical, yet slow enough to be precisely controllable. The amount of impurity and the distance diffused can be varied over several orders of magnitude by adjusting the time, temperature, or vapor concentration. For example, dif­ fusion depths are precisely controllable over a range from a small fraction of 1 micrometer (µm) to 20 µm or greater; surface concentra1ions are 3 available from 10 16 to 1020 atoms per cm , with the total number of diffused atoms between 10 11and 10 16 atoms per cm 2 of silicon area. Because of the good control available, it is easy to change the conductivity type of a piece of silicon several times by using increasingly higher concentrations of different impurities and thus fabricate transistors and other components. Oxide masking, first studied by C. J. Frosch and L. Derick, is a process by which the diffusion of impurities is limited to certain portions of the silicon slice, thus forming regions for specific functions, e.g., transistor base, resistor, etc. 6 Where oxide is present, no diffusion occurs, and where it is absent, diffusion of dopants into the silicon proceeds freely. Oxide masking in combination with photolithography offers the opportunity to control areas to very fine tolerances. For example, by 1975, oxide windows as small as 7 .5 µm wide were common, and much smaller windows followed thereafter. It was recognized from the earliest days that since diffusion is a batch process (i.e., many slices, each with many devices, can be diffused si­ multaneously), it would be inherently a low-cost technology, a key feature for the economic manufacture of ICs. 104 Engineering and Science in the Bell System Initially, control of oxide geometry was achieved by such crude methods as using dots of black wax to protect the oxide from its etchants. The foundations of modern IC photolithographic technology were laid by J. Andrus, who first used photosensitive etch-resistant polymers (photoresists) to define patterns in the masking oxide. 7 Although many advances have been made in the mask-making art (see section VII), and significant im­ provements in photoresist materials and alignment apparatus have been achieved, the basic photoresist processes used throughout the world in the fabrication of ICs are essentially those of Andrus. The first application of photo-defined oxide-masked diffusion to devices was in the semiconductor stepping device, developed in the mid-1950s by I. M. Ross, L.A. D'Asaro, and H. H . Loar. 8 [Fig. 2-2] A photo of this device is shown in Fig. 2-3(a) and a schematic in Fig. 2-3(b). It consists of four coupled special-purpose p-n-p-n transistors that perform the mem­ ory and space transfer functions of a four-element stepping circuit, and represents, in the eyes of many, the world's first SIC. Aluminum contacts to silicon are used extensively in SI Cs. As discussed in Chapter 1, aluminum metalization was used early in the development of transistors. While aluminum, which is an acceptor in silicon, is a natural choice for contacting p-type material, S. L. Matlow and E. L. Ralph of Hoffman Electronics Corporation demonstrated that aluminum can also form ohmic contacts to n+ layers on silicon .9 G. E. Moore and Noyce at Fairchild were the first to use aluminum to contact both n and p regions of a diffused silicon transistor. 10 Fig. 2-2. I. M. Ross (left) and L. A D' Asaro (right), who, along with H. H. Loar, developed the semic onductor stepping transistor . Silicon Integ rated Circuits 105 (a) (b) Fig. 2-3. The silicon stepping transistor, the first device to use photo­ defined oxide-masked diffusion. (a) The light regions are n-type and th e dark are p-type. Both were formed by oxide-masked diffusion. (D ' Asaro, IRE WESCON Conv. Rec., Pt. 3-El ectron Div. (1959): 42] (b) Schemati c of the silicon stepping transistor , consisting of four p -n-p-n diodes in ­ tegrated in a single structure. With electrodes attached, this device operated as a four-stage counter up to a rate of 2 X 106 counts per second.
Recommended publications
  • Native Configuration Manager API for Windows Library Reference
    Native Configuration Manager API for Windows Operating Systems Library Reference December 2003 05-1903-002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. This Native Configuration Manager API for Windows Operating Systems Library Reference as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without express written consent of Intel Corporation.
    [Show full text]
  • Delft University of Technology on Leveraging Vertical Proximity in 3D
    Delft University of Technology On Leveraging Vertical Proximity in 3D Memory Hierarchies Lefter, Mihai DOI 10.4233/uuid:f744c1af-505e-440c-bc49-2a1d95d0591d Publication date 2018 Document Version Final published version Citation (APA) Lefter, M. (2018). On Leveraging Vertical Proximity in 3D Memory Hierarchies. https://doi.org/10.4233/uuid:f744c1af-505e-440c-bc49-2a1d95d0591d Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. On Leveraging Vertical Proximity in 3D Memory Hierarchies Cover inspired by the works of Dirk Huizer and Anatoly Konenko. On Leveraging Vertical Proximity in 3D Memory Hierarchies Dissertation for the purpose of obtaining the degree of doctor at Delft University of Technology by the authority of the Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen chair of the Board for Doctorates to be defended publicly on Wednesday 14 November 2018 at 10:00 o’clock by Mihai LEFTER Master of Science in Computer Engineering Delft University of Technology, The Netherlands born in Bras, ov, Romania This dissertation has been approved by the promotors.
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • PC Hardware Contents
    PC Hardware Contents 1 Computer hardware 1 1.1 Von Neumann architecture ...................................... 1 1.2 Sales .................................................. 1 1.3 Different systems ........................................... 2 1.3.1 Personal computer ...................................... 2 1.3.2 Mainframe computer ..................................... 3 1.3.3 Departmental computing ................................... 4 1.3.4 Supercomputer ........................................ 4 1.4 See also ................................................ 4 1.5 References ............................................... 4 1.6 External links ............................................. 4 2 Central processing unit 5 2.1 History ................................................. 5 2.1.1 Transistor and integrated circuit CPUs ............................ 6 2.1.2 Microprocessors ....................................... 7 2.2 Operation ............................................... 8 2.2.1 Fetch ............................................. 8 2.2.2 Decode ............................................ 8 2.2.3 Execute ............................................ 9 2.3 Design and implementation ...................................... 9 2.3.1 Control unit .......................................... 9 2.3.2 Arithmetic logic unit ..................................... 9 2.3.3 Integer range ......................................... 10 2.3.4 Clock rate ........................................... 10 2.3.5 Parallelism .........................................
    [Show full text]
  • Memory Hierarchy Recap
    CS 252 Graduate Computer Architecture Lecture 8: Memory Hierarchy Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste http://inst.cs.berkeley.edu/~cs252 Recap: Vector Computers • Vectors provide efficient execution of data-parallel loop codes • Vector ISA provides compact encoding of machine parallelism • ISAs scale to more lanes without changing binary code • Vector registers provide fast temporary storage to reduce memory bandwidth demands, & simplify dependence checking between vector instructions • Scatter/gather, masking, compress/expand operations increase set of vectorizable loops • Requires extensive compiler analysis (or programmer annotation) to be certain that loops can be vectorized • Full “long” vector support still only in supercomputers (NEC SX8R, Cray X1E); microprocessors have limited “short” vector operations – Intel x86 SSE – IBM/Motorola PowerPC VMX/Altivec 9/25/2007 2 The Memory Wall Processor-Memory Performance Gap Growing 9/25/2007 3 Main Memory Background • Performance of Main Memory: – Latency: Cache Miss Penalty » Access Time: time between request and word arrives » Cycle Time: time between requests – Bandwidth: I/O & Large Block Miss Penalty (L2) • Main Memory is DRAM: Dynamic Random Access Memory – Dynamic since needs to be refreshed periodically (8 ms, 1% time) – Addresses divided into 2 halves (Memory as a 2D matrix): » RAS or Row Access Strobe » CAS or Column Access Strobe • Cache uses SRAM: Static Random Access Memory – No refresh
    [Show full text]
  • Modern Computer Architecture and Organization
    Modern Computer Architecture Ledin Jim Organization and Architecture Computer Modern and Organization Modern Computer Are you a software developer, systems designer, The book will teach you the fundamentals or computer architecture student looking for of computer systems including transistors, a methodical introduction to digital device logic gates, sequential logic, and instruction Architecture and architectures but overwhelmed by their operations. You will learn details of modern complexity? This book will help you to learn processor architectures and instruction sets how modern computer systems work, from the including x86, x64, ARM, and RISC-V. You will lowest level of transistor switching to the macro see how to implement a RISC-V processor in view of collaborating multiprocessor servers. a low-cost FPGA board and how to write a Organization You'll gain unique insights into the internal quantum computing program and run it on an behavior of processors that execute the code actual quantum computer. By the end of this developed in high-level languages and enable book, you will have a thorough understanding you to design more effi cient and scalable of modern processor and computer software systems. architectures and the future directions these architectures are likely to take. Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCs, and cloud servers Things you will learn: • Get to grips with transistor technology • Understand the purpose and operation and digital circuit principles of the supervisor mode • Discover
    [Show full text]
  • CS 152 Computer Architecture and Engineering
    CS 152 Computer Architecture and Engineering Lecture 6 - Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste http://inst.eecs.berkeley.edu/~cs152 Last time in Lecture 5 • Control hazards (branches, interrupts) are most difficult to handle as they change which instruction should be executed next • Speculation commonly used to reduce effect of control hazards (predict sequential fetch, predict no exceptions) • Branch delay slots make control hazard visible to software • Precise exceptions: stop cleanly on one instruction, all previous instructions completed, no following instructions have changed architectural state • To implement precise exceptions in pipeline, shift faulting instructions down pipeline to “commit” point, where exceptions are handled in program order 2/10/2009 CS152-Spring!09 2 CPU-Memory Bottleneck CPU Memory Performance of high-speed computers is usually limited by memory bandwidth & latency • Latency (time for a single access) Memory access time >> Processor cycle time • Bandwidth (number of accesses per unit time) if fraction m of instructions access memory, !1+m memory references / instruction !CPI = 1 requires 1+m memory refs / cycle (assuming MIPS RISC ISA) 2/10/2009 CS152-Spring!09 3 Core Memory • Core memory was first large scale reliable main memory – invented by Forrester in late 40s/early 50s at MIT for Whirlwind project • Bits stored as magnetization polarity on small ferrite cores threaded onto 2 dimensional grid of wires
    [Show full text]
  • MEMORY MAKER ROBERT DENNARD, Winner of THIS YEAR’S IEEE MEDAL of HONOR, FIGURED out How to DO DRAM RIGHT
    THE MAGAZINE OF TECHNOLOGY INSIDERS 05.09 MEMORY MAKER ROBERT DENNARD, WINNER OF THIS YEAR’S IEEE MEDAL OF HONOR, FIGURED OUT HOW TO DO DRAM RIGHT THE 25 MOST REMARKABLE CHIPS EVER TOUCH SCREENS GET TOUCHY-FEELY THE NETFLIX CHALLENGE: HELP US RECOMMEND MOVIES, WIN A MILLION DOLLARS volume 46 number 5 north american 05.09 UPDATE 11 BAIT TO TRACK DATA THIEVES A honeypot project in Germany finds viruses and tracks down the data they steal. By Michael Dumiak 12 CELLPHONE SECURITY THREAT 14 BRIGHT SPOTS IN THE GLOOM 14 ROBOTIC SEALS AID RESEARCH 15 TOUCH SCREENS WITH FEELING 16 THE RFID AS COMPUTER 24 18 ULTRAVIOLET RADIOS BEAM TO LIFE 20 THE BIG PICTURE Fabs get the white-glove treatment. OPINION 8 SPECTRAL LINES IEEE’s 125th-anniversary celebrations reveal the depth and breadth of its members’ contributions to technology. 10 FORUM Readers discuss the state of the U.S. nuclear arsenal and the demise of the business-method patent. 27 REFLECTIONS Bob Lucky’s head is in the clouds— 44 28 the computing clouds, that is. BETTER PICS: COVER STORY Medical DEPARTMENTS ultrasound 4 BACK STORY images will soon 48 THANKS FOR A man vanishes. Can Google find him? be much sharper [above]; a famed THE MEMORIES 6 CONTRIBUTORS 8-bit processor Robert Dennard’s 1968 invention of the one-transistor dynamic random- 22 HANDS ON powers a famed A high-definition CL D projector can cartoon robot access memory set the path of computing for the next half century. set you back US $2000—or you could [top right]; For this, he will receive the 2009 IEEE Medal of Honor.
    [Show full text]
  • Company Vendor ID (Decimal Format) (AVL) Ditest Fahrzeugdiagnose Gmbh 4621 @Pos.Com 3765 0XF8 Limited 10737 1MORE INC
    Vendor ID Company (Decimal Format) (AVL) DiTEST Fahrzeugdiagnose GmbH 4621 @pos.com 3765 0XF8 Limited 10737 1MORE INC. 12048 360fly, Inc. 11161 3C TEK CORP. 9397 3D Imaging & Simulations Corp. (3DISC) 11190 3D Systems Corporation 10632 3DRUDDER 11770 3eYamaichi Electronics Co., Ltd. 8709 3M Cogent, Inc. 7717 3M Scott 8463 3T B.V. 11721 4iiii Innovations Inc. 10009 4Links Limited 10728 4MOD Technology 10244 64seconds, Inc. 12215 77 Elektronika Kft. 11175 89 North, Inc. 12070 Shenzhen 8Bitdo Tech Co., Ltd. 11720 90meter Solutions, Inc. 12086 A‐FOUR TECH CO., LTD. 2522 A‐One Co., Ltd. 10116 A‐Tec Subsystem, Inc. 2164 A‐VEKT K.K. 11459 A. Eberle GmbH & Co. KG 6910 a.tron3d GmbH 9965 A&T Corporation 11849 Aaronia AG 12146 abatec group AG 10371 ABB India Limited 11250 ABILITY ENTERPRISE CO., LTD. 5145 Abionic SA 12412 AbleNet Inc. 8262 Ableton AG 10626 ABOV Semiconductor Co., Ltd. 6697 Absolute USA 10972 AcBel Polytech Inc. 12335 Access Network Technology Limited 10568 ACCUCOMM, INC. 10219 Accumetrics Associates, Inc. 10392 Accusys, Inc. 5055 Ace Karaoke Corp. 8799 ACELLA 8758 Acer, Inc. 1282 Aces Electronics Co., Ltd. 7347 Aclima Inc. 10273 ACON, Advanced‐Connectek, Inc. 1314 Acoustic Arc Technology Holding Limited 12353 ACR Braendli & Voegeli AG 11152 Acromag Inc. 9855 Acroname Inc. 9471 Action Industries (M) SDN BHD 11715 Action Star Technology Co., Ltd. 2101 Actions Microelectronics Co., Ltd. 7649 Actions Semiconductor Co., Ltd. 4310 Active Mind Technology 10505 Qorvo, Inc 11744 Activision 5168 Acute Technology Inc. 10876 Adam Tech 5437 Adapt‐IP Company 10990 Adaptertek Technology Co., Ltd. 11329 ADATA Technology Co., Ltd.
    [Show full text]
  • Intel I3 Processor
    Intel I3 Processor Arpit Section- E2E43, roll no.-A34, Reg. no.-11106840 School of Electronics and communication Lovely professional university, phagwara, Punjab Abstract-This term paper on Intel i3 processor is version of their processors are still considered the to define the role played by the Intel processor inin best. Some of the famous processor are from the the field of data manipulation and graphic display. latest group of the family ‗core‘. Intel core is the This term paper present report on the architecture processors i3 family which is famous for its latest of i3 processor made by Intel and improvement in revolutionary structure and integrated architecture it from predecessor. which also provide the advantage of the parallel computing. It‘s also wonderful in providing the 1-1- Introduction users with the excellent graphical user interfaces. Intel was founded in 1968 and its first product was Intel 3101 produced in 1969, Intel first product was world‘s‘s first solid state memory device with 16 x 4-bit SRAM. Intel 1103 came in 1970 was world first DRAM product with 1K-bit PMOS and it was used in HP 9800 series computers. By 1972, it became world bestselling memory chip, defeating Magnetic memory The Intel i3 processor with Intel HD Graphics offers an unparalleled computing Experience. This Intel MCS Family revolutionary new architecture allows for new MCS Family Intel CPU levels of intelligent performance and advanced media and graphics features — all while being MCS-4 4004 energy efficient. The processor include an MCS-40 4040 Integrated Memory Controller (IMC) making them monolithic processors.
    [Show full text]
  • Download PDF File
    Copyright©2017 Tokyo Electron Limited, All Right Reserved. Core Semiconductor Technologies Applied technologies 1876 Telephone invented by Graham Bell 1876 1897 Cathode ray tube invented by Karl Ferdinand Braun 1897 1900 Telegraph, telephone, 1900 Two-electrode vacuum tube invented by John Fleming wireless communication Three-electrode vacuum tube invented by Lee De Forest Wireless communication Vacuum tube Television receiver with a cathode ray tube devised technology technology by Russian scientist Boris Rosing 1910 1910 Semiconductor prehistory: Radio broadcasting 1920 Development of electronic circuit 1920 and control technology First radio station starts broadcasting TV broadcasting Radio broadcasting starts in the UK World’s first successful reception of images using a cathode ray tube Radio broadcasting starts in Japan Successful TV transmission experiment between New York and Washington DC Experimental TV broadcasting starts 1930 1930 Demand for durable solid state devices Computer Worlds’ first regular TV broadcasting starts Atanasoff‒Berry computer (ABC) invented in the UK (BBC) Bell Labs Model 1 relay computer introduced 1940 1940 Photovoltaic effect in silicon discovered by Russell Ohl (at Bell Labs) Codebreaking computer Colossus introduced P- and n-type conduction discovered by Jack Scaff Technique to manufacture p- and n-type semiconductors by World’s first general-purpose computer ENIAC completed doping impurities discovered by Henry Theuerer and Jack Scaff Point-contact transistor discovered by Walter Brattain and John Bardeen
    [Show full text]
  • Intel 80310 I/O Processor Chipset AAU Coding Techniques
    Intel® 80310 I/O Processor Chipset AAU Coding Techniques White Paper January 14, 2002 Document Number: 273649-001 Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® 80310 I/O processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.
    [Show full text]