(VIPR1) (NM 004624) Human Tagged ORF Clone Product Data

Total Page:16

File Type:pdf, Size:1020Kb

(VIPR1) (NM 004624) Human Tagged ORF Clone Product Data OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG209036 VIP Receptor 1 (VIPR1) (NM_004624) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: VIP Receptor 1 (VIPR1) (NM_004624) Human Tagged ORF Clone Tag: TurboGFP Symbol: VIPR1 Synonyms: HVR1; II; PACAP-R-2; PACAP-R2; RDC1; V1RG; VAPC1; VIP-R-1; VIPR; VIRG; VPAC1; VPAC1R; VPCAP1R Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 VIP Receptor 1 (VIPR1) (NM_004624) Human Tagged ORF Clone – RG209036 ORF Nucleotide >RG209036 representing NM_004624 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCGCCCGCCAAGTCCGCTGCCCGCCCGCTGGCTATGCGTGCTGGCAGGCGCCCTCGCCTGGGCCCTTG GGCCGGCGGGCGGCCAGGCGGCCAGGCTGCAGGAGGAGTGTGACTATGTGCAGATGATCGAGGTGCAGCA CAAGCAGTGCCTGGAGGAGGCCCAGCTGGAGAATGAGACAATAGGCTGCAGCAAGATGTGGGACAACCTC ACCTGCTGGCCAGCCACCCCTCGGGGCCAGGTAGTTGTCTTGGCCTGTCCCCTCATCTTCAAGCTCTTCT CCTCCATTCAAGGCCGCAATGTAAGCCGCAGCTGCACCGACGAAGGCTGGACGCACCTGGAGCCTGGCCC GTACCCCATTGCCTGTGGTTTGGATGACAAGGCAGCGAGTTTGGATGAGCAGCAGACCATGTTCTACGGT TCTGTGAAGACCGGCTACACCATCGGCTACGGCCTGTCCCTCGCCACCCTTCTGGTCGCCACAGCTATCC TGAGCCTGTTCAGGAAGCTCCACTGCACGCGGAACTACATCCACATGCACCTCTTCATATCCTTCATCCT GAGGGCTGCCGCTGTCTTCATCAAAGACTTGGCCCTCTTCGACAGCGGGGAGTCGGACCAGTGCTCCGAG GGCTCGGTGGGCTGTAAGGCAGCCATGGTCTTTTTCCAATATTGTGTCATGGCTAACTTCTTCTGGCTGC TGGTGGAGGGCCTCTACCTGTACACCCTGCTTGCCGTCTCCTTCTTCTCTGAGCGGAAGTACTTCTGGGG GTACATACTCATCGGCTGGGGGGTACCCAGCACATTCACCATGGTGTGGACCATCGCCAGGATCCATTTT GAGGATTATGGGTGCTGGGACACCATCAACTCCTCACTGTGGTGGATCATAAAGGGCCCCATCCTCACCT CCATCTTGGTAAACTTCATCCTGTTTATTTGCATCATCCGAATCCTGCTTCAGAAACTGCGGCCCCCAGA TATCAGGAAGAGTGACAGCAGTCCATACTCAAGGCTAGCCATGTCCACACTCCTGCTGATCCCCCTGTTT GGAGTACACTACATCATGTTCGCCTTCTTTCCGGACAATTTTAAGCCTGAAGTGAAGATGGTCTTTGAGC TCGTCGTGGGGTCTTTCCAGGGTTTTGTGGTGGCTATCCTCTACTGCTTCCTCAATGGTGAGGTGCAGGC GGAGCTGAGGCGGAAGTGGCGGCGCTGGCACCTGCAGGGCGTCCTGGGCTGGAACCCCAAATACCGGCAC CCGTCGGGAGGCAGCAACGGCGCCACGTGCAGCACGCAGGTTTCCATGCTGACCCGCGTCAGCCCAGGTG CCCGCCGCTCCTCCAGCTTCCAAGCCGAAGTCTCCCTGGTC ACGCGTACGCGGCCGCTCGAG - GFP Tag - GTTTAA Protein Sequence: >RG209036 representing NM_004624 Red=Cloning site Green=Tags(s) MRPPSPLPARWLCVLAGALAWALGPAGGQAARLQEECDYVQMIEVQHKQCLEEAQLENETIGCSKMWDNL TCWPATPRGQVVVLACPLIFKLFSSIQGRNVSRSCTDEGWTHLEPGPYPIACGLDDKAASLDEQQTMFYG SVKTGYTIGYGLSLATLLVATAILSLFRKLHCTRNYIHMHLFISFILRAAAVFIKDLALFDSGESDQCSE GSVGCKAAMVFFQYCVMANFFWLLVEGLYLYTLLAVSFFSERKYFWGYILIGWGVPSTFTMVWTIARIHF EDYGCWDTINSSLWWIIKGPILTSILVNFILFICIIRILLQKLRPPDIRKSDSSPYSRLAMSTLLLIPLF GVHYIMFAFFPDNFKPEVKMVFELVVGSFQGFVVAILYCFLNGEVQAELRRKWRRWHLQGVLGWNPKYRH PSGGSNGATCSTQVSMLTRVSPGARRSSSFQAEVSLV TRTRPLE - GFP Tag - V Restriction Sites: SgfI-MluI This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 2 / 4 VIP Receptor 1 (VIPR1) (NM_004624) Human Tagged ORF Clone – RG209036 Cloning Scheme: Plasmid Map: ACCN: NM_004624 ORF Size: 1371 bp OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_004624.2, NP_004615.2 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 3 / 4 VIP Receptor 1 (VIPR1) (NM_004624) Human Tagged ORF Clone – RG209036 RefSeq Size: 2771 bp RefSeq ORF: 1374 bp Locus ID: 7433 UniProt ID: P32241 Domains: 7tm_2, HormR Protein Families: Druggable Genome, GPCR, Transmembrane Protein Pathways: Neuroactive ligand-receptor interaction Gene Summary: This gene encodes a receptor for vasoactive intestinal peptide, a small neuropeptide. Vasoactive intestinal peptide is involved in smooth muscle relaxation, exocrine and endocrine secretion, and water and ion flux in lung and intestinal epithelia. Its actions are effected through integral membrane receptors associated with a guanine nucleotide binding protein which activates adenylate cyclase. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011] This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 4 / 4.
Recommended publications
  • The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands
    The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands Clare Louise Wishart Submitted in accordance with the requirements for the degree of Doctor of Philosophy of Science University of Leeds School of Biomedical Sciences Faculty of Biological Sciences September 2013 I Intellectual Property and Publication Statements The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Clare Louise Wishart to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2013 The University of Leeds and Clare Louise Wishart. II Acknowledgments Firstly I would like to offer my sincerest thanks and gratitude to my supervisor, Dr. Dan Donnelly, who has been nothing but encouraging and engaging from day one. I have thoroughly enjoyed every moment of working alongside him and learning from his guidance and wisdom. My thanks go to my academic assessor Professor Paul Milner whom I have known for several years, and during my time at the University of Leeds he has offered me invaluable advice and inspiration. Additionally I would like to thank my academic project advisor Dr. Michael Harrison for his friendship, help and advice. I would like to thank Dr. Rosalind Mann and Dr. Elsayed Nasr for welcoming me into the lab as a new PhD student and sharing their experimental techniques with me, these techniques have helped me no end in my time as a research student.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • MONOCLONAL ANTI-VASOACTIVE INTESTINAL PEPTIDE RECEPTOR 1 (VIPR 1, VPAC1) Clone AS58 Purified Mouse Immunoglobulin
    MONOCLONAL ANTI-VASOACTIVE INTESTINAL PEPTIDE RECEPTOR 1 (VIPR 1, VPAC1) Clone AS58 Purified Mouse Immunoglobulin Product Number V1631 Product Description Although structurally related, VIPR1 and VIPR2 exhibit Monoclonal Anti-Vasoactive Intestinal Peptide differences in expression and function and VIP has a Receptor 1 (VIPR1) (mouse IgG2a isotype) is derived 3-10 fold preference for VIPR1 over VIPR2 receptors. from the hybridoma produced by the fusion of mouse myeloma cells and splenocytes from a BALB/c mouse VIPR1 is expressed throughout the central nervous immunized with a unique peptide corresponding to a system (predominantly in the cerebral cortex and portion of human Vasoactive Intestinal Peptide hippocampus), in peripheral tissues including liver, lung Receptor 1 (VIPR1). The antibody was purified from and intestine and in T lymphocytes.14 VIPR1 mediates tissue culture supernatant using immobilized Protein G. suppression of chemotaxis and matrix metalloprotein- ase expression elicited by some cytokines and chemo- Monoclonal Anti-Vasoactive Intestinal Peptide kines, tumor cell migration induced by VIP, and vaso- Receptor 1 (VIPR1) recognizes VIPR1 protein from dilation. human and rat tissue by immunoblotting and by flow cytometric analysis of human cells using indirect VIPR2 is expressed throughout the central nervous immunofluorescence. The antibody does not recognize system, but to varying degrees. The highest expression VIPR2 protein. levels are in the thalamus and suprachiasmatic nucleus, but VIPR2 is also present in the hippocampus,
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Supplemental Table S1. Primers for Sybrgreen Quantitative RT-PCR Assays
    Supplemental Table S1. Primers for SYBRGreen quantitative RT-PCR assays. Gene Accession Primer Sequence Length Start Stop Tm GC% GAPDH NM_002046.3 GAPDH F TCCTGTTCGACAGTCAGCCGCA 22 39 60 60.43 59.09 GAPDH R GCGCCCAATACGACCAAATCCGT 23 150 128 60.12 56.52 Exon junction 131/132 (reverse primer) on template NM_002046.3 DNAH6 NM_001370.1 DNAH6 F GGGCCTGGTGCTGCTTTGATGA 22 4690 4711 59.66 59.09% DNAH6 R TAGAGAGCTTTGCCGCTTTGGCG 23 4797 4775 60.06 56.52% Exon junction 4790/4791 (reverse primer) on template NM_001370.1 DNAH7 NM_018897.2 DNAH7 F TGCTGCATGAGCGGGCGATTA 21 9973 9993 59.25 57.14% DNAH7 R AGGAAGCCATGTACAAAGGTTGGCA 25 10073 10049 58.85 48.00% Exon junction 9989/9990 (forward primer) on template NM_018897.2 DNAI1 NM_012144.2 DNAI1 F AACAGATGTGCCTGCAGCTGGG 22 673 694 59.67 59.09 DNAI1 R TCTCGATCCCGGACAGGGTTGT 22 822 801 59.07 59.09 Exon junction 814/815 (reverse primer) on template NM_012144.2 RPGRIP1L NM_015272.2 RPGRIP1L F TCCCAAGGTTTCACAAGAAGGCAGT 25 3118 3142 58.5 48.00% RPGRIP1L R TGCCAAGCTTTGTTCTGCAAGCTGA 25 3238 3214 60.06 48.00% Exon junction 3124/3125 (forward primer) on template NM_015272.2 Supplemental Table S2. Transcripts that differentiate IPF/UIP from controls at 5%FDR Fold- p-value Change Transcript Gene p-value p-value p-value (IPF/UIP (IPF/UIP Cluster ID RefSeq Symbol gene_assignment (Age) (Gender) (Smoking) vs. C) vs. C) NM_001178008 // CBS // cystathionine-beta- 8070632 NM_001178008 CBS synthase // 21q22.3 // 875 /// NM_0000 0.456642 0.314761 0.418564 4.83E-36 -2.23 NM_003013 // SFRP2 // secreted frizzled- 8103254 NM_003013
    [Show full text]
  • GPCR Expression Profiles Were Determined Using
    Supplemental Figures and Tables for Tischner et al., 2017 Supplemental Figure 1: GPCR expression profiles were determined using the NanoString nCounter System in 250 ng of pooled cell RNA obtained from freshly isolated CD4 T cells from naïve lymph nodes (CD4ln), spinal cord infiltrating CD4 T cells at peak EAE disease (CD4sc), and primary lung endothelial cells (luEC). Supplemental Figure 2: Array design and quality controls. A, Sorted leukocytes or endothelial cells were subjected to single‐cell expression analysis and re‐evaluated based on the expression of various identity‐defining genes. B, Expression of identity‐defining and quality control genes after deletion of contaminating or reference gene‐negative cells. Expression data are calculated as 2(Limit of detection(LoD) Ct – sample Ct) ; LoD Ct was set to 24. Supplemental Figure 3: Overview over GPCR expression frequencies in different freshly isolated immune cell populations and spinal cord endothelial cells as determined by single cell RT‐PCR. Abbreviations: CD4ln‐Tcon/CD4ln‐Treg, conventional (con) and regulatory (reg) CD4 T cells from lymph nodes (CD4ln) of naïve mice; CD4dr/CD4sc, CD4 T cells from draining lymph nodes (dr) or spinal cord (sc) at peak EAE disease; CD4spn2D/ CD4spn2DTh1/ CD4spn2DTh17, splenic CD4 T cells from 2D2 T cell receptor transgenic mice before (2D) and after in vitro differentiation towards Th1 (2DTh1) or Th17 (2DTh17); MonoSpn, splenic monocytes; CD11b_sc, spinal cord infiltrating CD11b‐ positive cells; sc_microglia, Ccr2neg,Cx3cr1pos microglia from spinal cord at peak disease; sc_macrophages, CCr2pos;Cx3cr1lo/neg macrophages from spinal cord at peak disease; BMDM_M1/BMDM_M2, bone marrow‐derived macrophages differentiated towards M1 or M2; ECscN and ECscEAE, spinal cord endothelial cells from naïve mice (N) and at peak EAE disease (EAE); SMC, smooth muscle cells from various vessel types (included as positive control to ascertain primer functionality).
    [Show full text]
  • Kenneth Martin Rosenberg Email: [email protected], [email protected] 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201
    The impact of the non-immune chemiome on T cell activation Item Type dissertation Authors Rosenberg, Kenneth Publication Date 2020 Abstract T cells are critical organizers of the immune response and rigid control over their activation is necessary for balancing host defense and immunopathology. It takes 3 signals provided by dendritic cells (DC) to fully activate a T cell response – T ce... Keywords signaling; T cell; T-Lymphocytes--immunology Download date 02/10/2021 13:41:58 Link to Item http://hdl.handle.net/10713/14477 Kenneth Martin Rosenberg Email: [email protected], [email protected] 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201 EDUCATION MD, University of Maryland, Baltimore, MD Expected May 2022 PhD, University of Maryland, Baltimore, MD December 2020 Graduate Program: Molecular Microbiology and Immunology (MMI) BS, University of Maryland, College Park, MD May 2013 Major: Bioengineering, cum laude University Honors Citation, Gemstone Citation RESEARCH EXPERIENCE UMSOM Microbiology and Immunology Baltimore, MD July 2016-present PhD Candidate Principal Investigator: Dr. Nevil Singh Thesis: The impact of the non-immune chemiome on T cell activation Examined environmental stimuli from classically “non-immune” sources – growth factors, hormones, neurotransmitters, etc. – act to modulate T cell signaling pathways and the functional effects of activating encounters with dendritic cells. UMSOM Anatomy and Neurobiology Baltimore, MD May-August 2015 Rotating student Principal Investigator: Dr. Asaf Keller Studied the role of descending modulation pathways on affective pain transmission. Performed tract- tracing experiments using targeted injection of Cholera toxin subunit B into the lateral parabrachial nucleus and ventrolateral periaqueductal gray of anesthetized transgenic mice.
    [Show full text]
  • Structure of the Human Glucagon Class B G-Protein-Coupled Receptor
    ARTICLE doi:10.1038/nature12393 Structure of the human glucagon class B G-protein-coupled receptor Fai Yiu Siu1, Min He2, Chris de Graaf3, Gye WonHan1, Dehua Yang2, Zhiyun Zhang2, Caihong Zhou2, Qingping Xu4, Daniel Wacker1, Jeremiah S. Joseph1, Wei Liu1, Jesper Lau5, Vadim Cherezov1, Vsevolod Katritch1, Ming-Wei Wang2 & Raymond C. Stevens1 Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 A˚ resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a ‘stalk’ region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain ( 12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon’s amino terminus into the seven transmembrane domain. The glucagon receptor (GCGR) is one of the 15 members of the secretin- that the conformation of the 7TM domain of BRIL–GCGR(DECD/ like (class B) family of G-protein-coupled receptors (GPCRs)1 in humans. DC) is similar to wild-type GCGR. The structure of the BRIL– GCGR is activated by the 29 amino acid hormonal peptide glucagon GCGR(DECD/DC) was determined at 3.4 A˚ resolution (Methods (Supplementary Fig.
    [Show full text]
  • Mechanism of VIPR1 Gene Regulating Human Lung Adenocarcinoma H1299 Cells
    Medical Oncology (2019) 36:91 https://doi.org/10.1007/s12032-019-1312-y ORIGINAL PAPER Mechanism of VIPR1 gene regulating human lung adenocarcinoma H1299 cells Lufeng Zhao1 · Zipu Yu1 · Baiqin Zhao1 Received: 5 June 2019 / Accepted: 29 August 2019 / Published online: 27 September 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The vasoactive intestinal peptide receptor-1(VIPR1) has prominent growth efects on a number of common neoplasms. How- ever, there were contradictions in the efect cross diferent cancers. We aimed to explore the efect of VIPR1 overexpression on a human lung adenocarcinoma cell line H1299. GEO dataset was used to screen diferentially expressed genes in lung adenocarcinoma tissues. The expression of VIPR1 mRNA was determined in the cancer Genome Atlas (TCGA). Immuno- histochemical analysis was performed to determine VIPR1 protein expression in lung adenocarcinoma and corresponding adjacent tissues (n = 22). Fluorescence real-time quantitative PCR detected the expression of VIPR1 in human normal lung epithelial cell line BEAS-2B and lung adenocarcinoma cell line H1299. Overexpression strategies were employed to assess functions of VIPR1 expression on several malignant phenotypes in H1299. The expression of VIPR1 was lower in lung adenocarcinoma tissues than that in adjacent tissues. Compared with the normal lung epithelial cells BEAS-2B, VIPR1 was down-regulated in lung cancer cells H1299 (P < 0.05). After the overexpression of VIPR1, we found that VIPR1 signifcantly inhibited growth, migration, and invasion of H1299 cells (P < 0.05). Our fndings point out the tumor suppressor roles of VIPR1 in human LUAD pathogenesis. Keywords VIPR1 · Lung adenocarcinoma · Proliferation · Migration and invasion Introduction physiology and mainly functions via two receptor subtypes VAPC1 and VAPC2 [3].
    [Show full text]
  • An Integrative Analysis of Gene Expression Profiles
    Int J Clin Exp Pathol 2020;13(7):1698-1706 www.ijcep.com /ISSN:1936-2625/IJCEP0107763 Original Article Identification of transcriptomic markers for developing idiopathic pulmonary fibrosis: an integrative analysis of gene expression profiles Diandian Li1, Yi Liu2, Bo Wang1 1Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; 2West China School of Medicine, Sichuan University, Chengdu 610041, China Received January 12, 2020; Accepted March 6, 2020; Epub July 1, 2020; Published July 15, 2020 Abstract: Idiopathic pulmonary fibrosis (IPF) remains a lethal disease with unknown etiology and unmet medical need. The aim of this study was to perform an integrative analysis of multiple public microarray datasets to inves- tigate gene expression patterns between IPF patients and healthy controls. Moreover, functional interpretation of differentially expressed genes (DEGs) was performed to assess the molecular mechanisms underlying IPF progres- sion. DEGs between IPF and normal lung tissues were picked out by GEO2R tool and Venn diagram software. Data- base for Annotation, Visualization and Integrated Discovery (DAVID) was applied to analyze gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway. Protein-protein interaction (PPI) of these DEGs was visu- alized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). 5520 DEGs were identified in IPF based on six profile datasets, including 3714 up-regulated genes and 1806 down-regulated genes. Using Venn software, a total of 367 commonly altered DEGs were revealed, including 259 up-regulated genes mostly enriched in collagen catabolic process, heparin binding, and the extracellular region.
    [Show full text]
  • Functional Associations Among G Protein-Coupled Neurotransmitter Receptors in the Human Brain Skirmantas Janušonis
    Janušonis BMC Neuroscience 2014, 15:16 http://www.biomedcentral.com/1471-2202/15/16 RESEARCH ARTICLE Open Access Functional associations among G protein-coupled neurotransmitter receptors in the human brain Skirmantas Janušonis Abstract Background: The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level. Results: A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated. Conclusions: The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders.
    [Show full text]