Supplemental Data

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Data Supplemental Figure 1. F2R S1PR1 GPR160 ELTD1 CD97 Supplemental Figure 2. A B brain heart lung liver kidney spleen testis skm Expression in mouse ssues glom rok Gprc5a Gapdh Human Protein Atlas RNAseq database Supplemental Figure 3. A Gprc5a Pdgfrb Merged CL CL Gprc5a CD31 Merged CL CL B C 1.4 * 1.2 mc 1 matrix 0.8 0.6 0.4 matrix 0.2 0 pod end 1 2 mes3 D Vector Gprc5a E 40 kD - - Gprc5a - acn Supplemental Figure 4. Control 12 month-old KO 12 month-old A B C D E F 1 2 0.8 * 1.5 score 0.6 m µ 1 0.4 0.2 Slits/ 0.5 Mesangial 0 0 Ctrl KO Ctrl KO Supplemental Figure 5. A B 1.2 Vector Gprc5a 1 * 0.8 0.6 * 0.4 * Normalized Density 0.2 0 pEGFR/tEGR pSmad/tSmad TGF-β1 C 1.8 siCON 1.6 siGprc5a * 1.4 * * 1.2 1 0.8 0.6 NormalizedDensity 0.4 0.2 0 pEGFR/tEGR pSmad/tSmad TGF-β1 Supplemental table 1. List of glomerulus-expressed GPCRs as detected by qPCR. Data shown as mean ± standard deviation (Glom=glomerulus, Rok=rest of kidney). GPCR Glom Rok Glom/Rok LPAR6 41892,11 ± 38478,89 1040,06 ± 1370,12 39,28 ELTD1 30275,64 ± 14085,26 33,23 ± 46,99 910,13 GPR116 24020,06 ± 7789,84 55,1 ± 47,75 434,96 PTH1R 15402,81 ± 17644,32 7521,01 ± 3264,57 1,05 CALCRL 14096,09 ± 3854,84 199,06 ± 222,52 69,81 HPRT1 13342,04 ± 10677,69 1824,77 ± 1767,23 6,31 S1PR5 9474,7 ± 10124,3 110,84 ± 29,54 84,48 LPHN2 8645,89 ± 914,74 256,04 ± 293,87 32,77 FZD1 8176,2 ± 4947,45 1321,97 ± 1311,91 5,18 CXCR4 7097,31 ± 4388,91 535,98 ± 640,28 12,24 GPR160 6446,59 ± 1550,07 4816,3 ± 5918,99 0,34 NPY1R 6177,74 ± 6282,76 209,64 ± 296,48 28,47 PTGER4 5323,66 ± 3789,51 179,13 ± 210 28,72 RXFP1 4785,68 ± 1531,16 1,13 ± 1,6 4234,74 ADRB1 4404,61 ± 6229,06 307,91 ± 348,03 13,3 F2R 4140,07 ± 1977,93 167,62 ± 174,95 23,7 GPR4 3969,84 ± 833,92 91,04 ± 112,2 42,61 NPR1 3934,21 ± 3350,55 95,16 ± 45,01 40,34 S1PR1 3456,24 ± 275,58 18,02 ± 20,35 190,78 P2RY13 2889 ± 1976,44 300,27 ± 334,26 8,62 GPR18 2638,88 ± 55,61 274,22 ± 387,81 8,62 CD97 2473,76 ± 1908,21 81,07 ± 22,28 29,51 FZD4 2276,04 ± 1152,38 133,56 ± 118,89 16,04 LGR4 2066,89 ± 917,68 636,44 ± 782,06 2,25 EDNRB 1968,09 ± 1987,51 175,56 ± 203,42 10,21 FZD8 1883,8 ± 1522,78 286,02 ± 164,32 5,59 CMKLR1 1843,35 ± 1319,13 24,54 ± 20,92 74,12 FZD7 1812,88 ± 909,53 334,15 ± 417,1 4,43 CRCP 1618,04 ± 927,95 886,3 ± 190,45 0,83 GPRC5B 1585,22 ± 371,1 43,6 ± 3,61 35,36 APLNR 1437,43 ± 1565,72 17,14 ± 12,4 82,88 P2RY8 1396,83 ± 492,35 116,37 ± 116,17 11 CCRL2 1334,77 ± 648,96 27,91 ± 35,84 46,83 TBP 1306,6 ± 143 201,97 ± 132,33 5,47 LTB4R2 1255,64 ± 913,91 31,48 ± 35,77 38,88 GPR56 1216,47 ± 42,82 707,7 ± 478,7 0,72 NPR2 1208,39 ± 764,5 82,62 ± 83,16 13,63 CYSLTR1 1173,21 ± 16,82 26,73 ± 21,52 42,89 SSTR1 1098,23 ± 906,65 600,49 ± 680,75 0,83 XPR1 1071,68 ± 136,26 861,57 ± 892,77 0,24 GPBAR1 1053,72 ± 873,55 87,5 ± 27,04 11,04 GPR34 1037,58 ± 4,29 456,5 ± 606,21 1,27 TAS2R13 1027,12 ± 214,18 340,33 ± 481,29 2,02 FPR1 1001,44 ± 1104,68 48,7 ± 54,58 19,57 VIPR1 957,99 ± 516,73 1,36 ± 0,22 702,22 GPR65 948,64 ± 345,01 37,8 ± 43,95 24,1 CHRM3 929,86 ± 118,76 3,65 ± 2,57 253,9 DRD5 921,67 ± 1168,33 441,64 ± 624,57 1,09 AGTR1 920,76 ± 1302,15 151,15 ± 205,5 5,09 CX3CR1 873,69 ± 145,36 49,2 ± 46,77 16,76 F2RL2 869,62 ± 159,18 99,39 ± 132,67 7,75 TAS2R14 832,8 ± 731,27 165,07 ± 217,96 4,05 GABBR1 828,79 ± 283 9,51 ± 13,45 86,17 CXCR2 825,56 ± 752,67 61,89 ± 54,6 12,34 TBXA2R 821,6 ± 93,03 0 ± 0 - TAS2R10 773,93 ± 567,76 280,27 ± 396,37 1,76 P2RY1 747,01 ± 345,04 352,9 ± 480,6 1,12 NPY5R 743,98 ± 35,34 372,79 ± 527,21 1 LANCL1 743,76 ± 113,51 320,23 ± 256,55 1,32 S1PR3 720 ± 15,8 36,34 ± 24,18 18,81 TAAR1 709,53 ± 873,23 291,99 ± 393,48 1,43 CCR2 679,16 ± 594,11 83,9 ± 97,54 7,1 EDNRA 678,55 ± 384,23 156,17 ± 169,42 3,35 TAS2R4 632,56 ± 386,52 78,5 ± 95,15 7,06 TAS2R50 620,65 ± 656 254,29 ± 359,62 1,44 DRD4 614,74 ± 725,98 26,47 ± 9,55 22,23 GPR173 597,31 ± 337,05 22,35 ± 15,48 25,73 FPR2 585,44 ± 649,47 29,28 ± 41,41 18,99 PTGER2 564,8 ± 15,77 20,19 ± 14,01 26,97 SORT1 555,94 ± 510,36 202,98 ± 178,16 1,74 HCAR3 548,79 ± 387,63 139,57 ± 128,38 2,93 HTR2B 525,1 ± 250,96 2,72 ± 1,27 191,86 GPR125 517,17 ± 38,73 176,27 ± 185,54 1,93 GPRC5A 504,97 ± 100,44 30,38 ± 42,97 15,62 OPN3 502,64 ± 266,96 497,29 ± 540,34 0,01 GPR180 498,51 ± 99,04 139,09 ± 156,46 2,58 CYSLTR2 497,64 ± 408,53 84,87 ± 112,11 4,86 CXCR7 461,02 ± 70,52 142,67 ± 141,63 2,23 C3AR1 457,53 ± 380,95 56,79 ± 63,58 7,06 P2RY10 456,65 ± 374,09 73,95 ± 104,58 5,18 C5AR1 454,69 ± 13,83 62,87 ± 19,31 6,23 GNRHR 432,27 ± 347,56 125,42 ± 177,37 2,45 CHRM2 414,87 ± 488,42 71,04 ± 100,46 4,84 ADORA1 403,89 ± 418,78 18,65 ± 4,59 20,66 VN1R1 397,47 ± 37,81 52,85 ± 74,74 6,52 TACR1 387,12 ± 315,38 0 ± 0 - GPR182 383,91 ± 53,67 25,6 ± 32,14 14 FZD3 382,1 ± 342,42 198,69 ± 160,84 0,92 MRGPRX1 377,21 ± 533,45 43,62 ± 54,99 7,65 TAS2R1 368,95 ± 454,33 84,16 ± 119,01 3,38 GPRC5D 368,66 ± 6,33 38,84 ± 45,44 8,49 GPR17 363,04 ± 146,32 39,34 ± 24,72 8,23 CCR5 362,98 ± 416,77 63,96 ± 90,45 4,68 GPR22 357,86 ± 387,31 272,84 ± 379,27 0,31 GRM3 356,14 ± 426,03 135,92 ± 192,23 1,62 TAS2R3 354,53 ± 319,34 38,11 ± 53,89 8,3 MC4R 352,89 ± 455,32 28,4 ± 40,17 11,43 CHRM5 351,54 ± 289,38 64,06 ± 79,25 4,49 TAS2R38 345,33 ± 411,82 34,93 ± 49,4 8,89 TAS2R16 341,94 ± 408,13 102,01 ± 143,66 2,35 NPY2R 333,89 ± 401,95 34,59 ± 44,44 8,65 GPR174 331,94 ± 304,56 50,64 ± 62,28 5,55 GPR21 330,87 ± 201,16 22,17 ± 31,35 13,93 HCAR1 328,57 ± 38,97 32,52 ± 7,04 9,11 MRGPRF 324,32 ± 8,37 34 ± 31,08 8,54 GRM7 322,15 ± 414,84 100,95 ± 132,24 2,19 TAAR6 318,12 ± 439,81 143,85 ± 190,89 1,21 TRHR 310,23 ± 364,33 109,31 ± 154,59 1,84 LTB4R 307,81 ± 103,47 53,55 ± 26,61 4,75 PTGFR 304,11 ± 361,65 204 ± 288,5 0,49 CHRM1 304,01 ± 40,17 25,64 ± 23,98 10,86 GPR63 301,93 ± 163,86 77,84 ± 96,33 2,88 GPR77 301,08 ± 10,09 114,49 ± 137,33 1,63 CCR1 296,15 ± 259,11 44,6 ± 60,08 5,64 HRH1 294,74 ± 132,58 14,06 ± 19,89 19,96 TAAR8 294,33 ± 294,18 131,53 ± 186,01 1,24 CCBP2 288,98 ± 79,88 43,81 ± 29,52 5,6 MRGPRD 287,27 ± 110,03 16,43 ± 4,18 16,48 HTR1F 286,18 ± 313,64 74,35 ± 105,14 2,85 CNR1 274,6 ± 289,21 28,29 ± 32,82 8,71 LPAR4 271,22 ± 379,55 53,53 ± 75,7 4,07 SIGMAR1 264,55 ± 83,92 89,27 ± 92,51 1,96 CXCR6 263,58 ± 184,94 21,16 ± 18,62 11,45 HTR2A 262,4 ± 331,83 75,59 ± 79,94 2,47 CRHR1 262,06 ± 203,66 46,65 ± 14,84 4,62 GPR133 261,06 ± 150,82 13,61 ± 5,87 18,18 OXTR 259,08 ± 125,38 174,66 ± 247 0,48 TAAR5 253,51 ± 288,62 13,28 ± 18,78 18,09 LPHN1 253,39 ± 141,85 8,64 ± 1,89 28,32 FFAR3 248,12 ± 43,77 19,57 ± 11,02 11,68 CCR3 246,09 ± 231,83 19,26 ± 18,36 11,78 GPR148 243,33 ± 182,91 43,23 ± 47,31 4,63 SMO 242,8 ± 54,27 120,53 ± 109,58 1,01 GPR135 242,24 ± 63,81 139,66 ± 29,34 0,73 CCR6 240,99 ± 259,32 103,99 ± 125,83 1,32 CCR9 239,91 ± 202,09 27,06 ± 38,27 7,87 HRH4 239,04 ± 271,63 65,48 ± 86,85 2,65 XCR1 236,17 ± 296,39 17,81 ± 11,59 12,26 HCAR2 234,9 ± 240,19 19,82 ± 11,32 10,85 GPR101 234,28 ± 283,61 27,14 ± 31,22 7,63 TAS2R5 233,81 ± 62,51 66,22 ± 93,64 2,53 P2RY4 232,72 ± 155,12 11,93 ± 16,87 18,51 FFAR2 231,93 ± 1,68 24,31 ± 28,17 8,54 GPER 230,11 ± 124,41 81,1 ± 21,48 1,84 GP1BA 226,76 ± 36,22 60,93 ± 70,9 2,72 PROKR1 220,45 ± 201,84 21,55 ± 30,47 9,23 MC2R 216,25 ± 257,15 62,26 ± 88,05 2,47 GPR111 213,32 ± 52,92 0 ± 0 - OPN4 204,93 ± 166,61 11,79 ± 4,99 16,38 P2RY2 201,19 ± 1,34 18,27 ± 14,68 10,01 GPR55 199,48 ± 83,54 10,77 ± 15,24 17,51 TAAR2 197,67 ± 250,16 75,54 ± 96,42 1,62 LGR5 196,84 ± 266,28 33,68 ± 47,63 4,84 HRH2 194,7 ± 64,78 18,79 ± 14,31 9,36 PTAFR 194,34 ± 2,19 28,85 ± 13,65 5,74 MLNR 191,37 ± 200,51 30,62 ± 43,3 5,25 GPR15 190,84 ± 247,23 29,86 ± 31,5 5,39 HTR1E 190,33 ± 239,58 12,52 ± 17,71 14,2 MAS1 189,34 ± 213,7 42,13 ± 59,58 3,49 BAI3 187,98 ± 205,11 1,73 ± 0,69 107,35 FZD6 182,78 ± 99,26 98,54 ± 107,33 0,85 GPR152 178,37 ± 113,66 70,7 ± 80,38 1,52 CCKBR 178,04 ± 243,5 17,89 ± 25,29 8,95 GPR61 176,47 ± 38,93 62,61 ± 88,54 1,82 GPR84 176,27 ± 123,87 14,71 ± 20,81 10,98 GPR119 175,94 ± 190,27 7,25 ± 10,25 23,28 MTNR1B 175,73 ± 207,88 9,6 ± 13,57 17,31 GRM8 173,63 ± 226,38 39,47 ± 45,15 3,4 RXFP4 171,85 ± 74,77 14,47 ± 9,67 10,88 OGFR 169,46 ± 109,84 80,55 ± 27,87 1,1 GRM2 169,07 ± 59,58 13,78 ± 13,66 11,27 GHSR 166,68 ± 169,44 18,77 ± 3,36 7,88 LPAR5 162,57 ± 124,99 40,58 ± 36,86 3,01 FZD10 161,37 ± 51,15 71,26 ± 96,86 1,26 HCRTR1 159,08 ± 33,45 16,84 ± 8,37 8,45 AVPR2 156,8 ± 178,87 48,82 ± 42,82 2,21 MC3R 155,41 ± 175,64 9,33 ± 13,2 15,65 TPRA1 155,37 ± 59,24 48,26 ± 65,01 2,22 BDKRB1 154,82 ± 18,21 24,03 ± 17,34 5,44 DARC 153,22 ± 160,04 9,89 ± 13,99 14,49 MC5R 152,1 ± 201,46 34,39 ± 36,86 3,42 GPR45 148,4 ± 132,96 20,85 ± 22,94 6,12 CXCR1 148,02 ± 39,73 3,04 ± 4,3 47,71 EMR3 146,19 ± 22,84 3,52 ± 4,98 40,49 GPR151 144,81 ± 64,8 44,32 ± 51,35 2,27 RGR 143,86 ± 98,89 26,49 ± 37,46 4,43 GPR161 142,66 ± 30,59 0 ± 0 - BDKRB2 137,96 ± 71,68 78,04 ± 58,34 0,77 AVPR1A 134,18 ± 158,56 14,83 ± 4,43 8,05 CNR2 133,25 ± 80,12 16,99 ± 16,51 6,84 GPR6 132,89 ± 178,58 21,92 ± 22,53 5,06 HTR1B 131,64 ± 135,78 9,49 ± 13,42 12,87 GPR113 127,85 ± 81,53 27,5 ± 13,61 3,65 LPAR2 124,31 ± 81,06 21,88 ± 9,6 4,68 CALCR 123,07 ± 44,31 6,26 ± 8,85 18,66 GPR32 122,37 ± 57,27 10,47 ± 3,69 10,69 MCHR1 120,55 ± 48,19 17,68 ± 14,64 5,82 GPR171 120,54 ± 31,36 26,51 ± 19,32 3,55 MC1R 120,43 ± 27,51 41,37 ± 29,77 1,91 HTR1D 118,9 ± 80,43 7,36 ± 2,86 15,15 CELSR3 118,22 ± 17,4 27,33 ± 15,17 3,33 DRD1 117,96 ± 138,52 9,93 ± 14,04 10,88 HTR1A 113,9 ± 96,34 14,64 ± 12,65 6,78 GNRHR2 113,13 ± 81,34 21,82 ± 2,88 4,19 GPR3 112,36 ± 83,66 32,91 ± 38,6 2,41 PTGDR 112,09 ± 70,35 6,72 ± 0,36 15,67 GPR68 111,25 ± 50,67 28,17 ± 2,93 2,95 GPR39 108,77 ± 101,5 29,51 ± 14,39 2,69 PROKR2 103,62 ± 110,51 8,63 ± 12,2 11,01 OXER1 102,84 ± 12,81 51,84 ± 0,62 0,98
Recommended publications
  • Single-Cell Rnaseq Reveals Seven Classes of Colonic Sensory Neuron
    Gut Online First, published on February 26, 2018 as 10.1136/gutjnl-2017-315631 Neurogastroenterology ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2017-315631 on 26 February 2018. Downloaded from Single-cell RNAseq reveals seven classes of colonic sensory neuron James R F Hockley,1,2 Toni S Taylor,1 Gerard Callejo,1 Anna L Wilbrey,2 Alex Gutteridge,2 Karsten Bach,1 Wendy J Winchester,2 David C Bulmer,1 Gordon McMurray,2 Ewan St John Smith1 ► Additional material is ABSTRact pathways to the central nervous system (CNS).1 In published online only. To view Objective Integration of nutritional, microbial and the colorectum, sensory innervation is organised please visit the journal online (http:// dx. doi. org/ 10. 1136/ inflammatory events along the gut-brain axis can alter into two main pathways: thoracolumbar (TL) spinal gutjnl- 2017- 315631). bowel physiology and organism behaviour. Colonic afferents projecting via the lumbar splanchnic sensory neurons activate reflex pathways and give nerve (LSN) and lumbosacral (LS) spinal afferents 1Department of Pharmacology, University of Cambridge, rise to conscious sensation, but the diversity and projecting via the pelvic nerve (PN) that are respon- Cambridge, UK division of function within these neurons is poorly sible for transducing conscious sensations of full- 2Neuroscience and Pain understood. The identification of signalling pathways ness, discomfort, urgency and pain, in addition to Research Unit, Pfizer, contributing to visceral sensation is constrained by a reflex actions.2 Cambridge, UK paucity of molecular markers. Here we address this by Visceral sensory afferents act to maintain many comprehensive transcriptomic profiling and unsupervised aspects of GI physiology, such as continence and Correspondence to James R F Hockley, Department clustering of individual mouse colonic sensory neurons.
    [Show full text]
  • F2RL2 Antibody Cat
    F2RL2 Antibody Cat. No.: 56-323 F2RL2 Antibody F2RL2 Antibody immunohistochemistry analysis in formalin fixed and paraffin embedded human heart tissue followed by peroxidase conjugation of the secondary antibody and DAB staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This F2RL2 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 21-50 amino acids from the N-terminal region of human F2RL2. TESTED APPLICATIONS: IHC-P, WB For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 PREDICTED MOLECULAR 43 kDa WEIGHT: September 25, 2021 1 https://www.prosci-inc.com/f2rl2-antibody-56-323.html Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: F2RL2 Proteinase-activated receptor 3, PAR-3, Coagulation factor II receptor-like 2, Thrombin ALTERNATE NAMES: receptor-like 2, F2RL2, PAR3 ACCESSION NO.: O00254 GENE ID: 2151 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References Coagulation factor II (thrombin) receptor-like 2 (F2RL2) is a member of the large family of 7-transmembrane-region receptors that couple to guanosine-nucleotide-binding proteins.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Supplementary Data
    Supplemental Data A novel mouse model of X-linked nephrogenic diabetes insipidus: Phenotypic analysis and therapeutic implications Jian Hua Li, Chung-Lin Chou, Bo Li, Oksana Gavrilova, Christoph Eisner, Jürgen Schnermann, Stasia A. Anderson, Chu-Xia Deng, Mark A. Knepper, and Jürgen Wess Supplemental Methods Metabolic cage studies. Animals were maintained in mouse metabolic cages (Hatteras Instruments, Cary, NC) under controlled temperature and light conditions (12 hr light and dark cycles). Mice received a fixed daily ration of 6.5 g of gelled diet per 20 g of body weight per day. The gelled diet was composed of 4 g of Basal Diet 5755 (Test Diet, Richmond, IN), 2.5 ml of deionized water, and 65 mg agar. Preweighted drinking water was provided ad libitum during the course of the study. Mice were acclimated in the metabolic cages for 1-2 days. Urine was collected under mineral oil in preweighted collection vials for successive 24 hr periods. Analysis of GPCR expression in mouse IMCD cells via TaqMan real-time qRT-PCR. Total RNA prepared from mouse IMCD tubule suspensions was reverse transcribed as described under Experimental Procedures. Tissues from ten 10-week old C57BL/6 WT mice were collected and pooled for each individual experiment. cDNA derived from 640 ng of RNA was mixed with an equal volume of TaqMan gene expression 2 x master mix (Applied Biosystems, Foster City, CA). 100 μl-aliquots of this mixture (corresponding to 80 ng of RNA) were added to each of the 8 fill ports of a 384-well plate of a mouse GPCR array panel (Applied Biosystems).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Targeting Lysophosphatidic Acid in Cancer: the Issues in Moving from Bench to Bedside
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks cancers Review Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside Yan Xu Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA; [email protected]; Tel.: +1-317-274-3972 Received: 28 August 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Since the clear demonstration of lysophosphatidic acid (LPA)’s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications. Keywords: Autotaxin (ATX); ovarian cancer (OC); cancer stem cell (CSC); electrospray ionization tandem mass spectrometry (ESI-MS/MS); G-protein coupled receptor (GPCR); lipid phosphate phosphatase enzymes (LPPs); lysophosphatidic acid (LPA); phospholipase A2 enzymes (PLA2s); nuclear receptor peroxisome proliferator-activated receptor (PPAR); sphingosine-1 phosphate (S1P) 1.
    [Show full text]
  • EGFR Confers Exquisite Specificity of Wnt9a-Fzd9b Signaling in Hematopoietic Stem Cell Development
    bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Grainger, et al, 2018 EGFR confers exquisite specificity of Wnt9a-Fzd9b signaling in hematopoietic stem cell development Stephanie Grainger1, Nicole Nguyen1, Jenna Richter1,2, Jordan Setayesh1, Brianna Lonquich1, Chet Huan Oon1, Jacob M. Wozniak2,3,4, Rocio Barahona1, Caramai N. Kamei5, Jack Houston1,2, Marvic Carrillo-Terrazas3,4, Iain A. Drummond5,6, David Gonzalez3.4, Karl Willert#,¥,1, and David Traver¥,1,7. ¥co-corresponding authors: [email protected]; [email protected] #Lead contact 1Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, 92037, USA. 2Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, 92037, USA. 3Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, 92093, USA. 4Department of Pharmacology, University of California, San Diego, La Jolla, California, 92092 5Massachusetts General Hospital Nephrology Division, Charlestown, Massachusetts, 02129, USA. 6Harvard Medical School, Department of Genetics, Boston MA 02115 7Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92037, USA. Running title: A mechanism for Wnt-Fzd specificity in hematopoietic stem cells Keywords: hematopoietic stem cell (HSC), Wnt, Wnt9a, human, zebrafish, Fzd, Fzd9b, FZD9, EGFR, APEX2 1 bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Celsr1-3 Cadherins in PCP and Brain Development
    CHAPTER SEVEN Celsr1–3 Cadherins in PCP and Brain Development Camille Boutin, André M. Goffinet1, Fadel Tissir1 Institute of Neuroscience, Developmental Neurobiology, Universite´ Catholique de Louvain, Brussels, Belgium 1Corresponding authors: Equal contribution. e-mail address: [email protected]; andre. [email protected] Contents 1. Celsr1–3 Expression Patterns 164 2. Celsr1: A Major Player in Vertebrate PCP 165 3. Celsr2 and 3 in Ciliogenesis 169 4. Celsr1–3 in Neuronal Migration 171 5. Celsr2 and Celsr3 in Brain Wiring 174 5.1 Motifs of Celsr important for their functions 176 References 179 Abstract Cadherin EGF LAG seven-pass G-type receptors 1, 2, and 3 (Celsr1–3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for important and distinct roles of Celsr1–3 in planar cell polarity (PCP) and brain development and maintenance. Although the role of Celsr in PCP is conserved from flies to mammals, other functions may be more distantly related, with Celsr working only with one or a subset of the classical PCP partners. Here, we review the literature on Celsr in PCP and neural devel- opment, point to several remaining questions, and consider future challenges and possible research trends. Celsr1–3 genes encode atypical cadherins of more than 3000 amino acids ( Fig. 7.1). Their large ectodomain is composed of nine N-terminal cadherin repeats (typical cadherins have five repeats), six epidermal growth factor (EGF)-like domains, two laminin G repeats, one hormone receptor motif (HRM), and a G-protein-coupled receptor proteolytic site (GPS).
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Molecular Characterization of Clonal Human Renal Forming Cells Cohen-Zontag Osnat , Gershon Rotem , Harari-Steinberg Orit , Kant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978254; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular characterization of clonal human renal forming cells Cohen-Zontag Osnat1,7,*, Gershon Rotem1,7,*, Harari-Steinberg Orit1,7,*, Kanter Itamar4, Omer Dorit1,7 , Pleniceanu Oren1,7, Tam Gal4, Oriel Sarit4, Ben-Hur Herzl8,9 , Katz Guy1,3,5,7, Zohar Dotan2,7, Kalisky Tomer4,#, Dekel Benjamin1, 6,7,#,^, Pode- Shakked Naomi1,3,7,#. 1Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel 2Dept of Urology, Sheba Medical Center, Tel-Hashomer, Israel 3The Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel 4Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel. 5The Joseph Buchman Gynecology and Maternity Center, Sheba Medical Center, Tel- Hashomer, Israel 6Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel 7Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 8L.E.M. Laboratory of Early Detection, Nes Ziona, Israel 9Department of Obstetrics and Gynecology, Assaf Harofeh Medical Center, Tzrifin, Israel *These first authors contributed equally to this work #These senior authors contributed equally to this work ^Correspondence: Benjamin Dekel MD, PhD Pediatric Stem Cell Research Institute Edmond & Lily Safra Children's Hospital, Sheba Medical Center E-mails: [email protected] or [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978254; this version posted March 6, 2020.
    [Show full text]
  • In-Depth Characterization of the Wnt-Signaling/Β-Catenin Pathway In
    Götzel et al. BMC Gastroenterology (2019) 19:38 https://doi.org/10.1186/s12876-019-0957-5 RESEARCH ARTICLE Open Access In-depth characterization of the Wnt- signaling/β-catenin pathway in an in vitro model of Barrett’s sequence Katharina Götzel1, Olga Chemnitzer1, Luisa Maurer1, Arne Dietrich1,2, Uwe Eichfeld1, Orestis Lyros1, Yusef Moulla1, Stefan Niebisch1, Matthias Mehdorn1, Boris Jansen-Winkeln1, Michael Vieth3, Albrecht Hoffmeister4, Ines Gockel1 and René Thieme1* Abstract Background: An altered Wnt-signaling activation has been reported during Barrett’s esophagus progression, but with rarely detected mutations in APC and β-catenin (CTNNB1) genes. Methods: In this study, a robust in-depth expression pattern analysis of frizzled receptors, co-receptors, the Wnt- ligands Wnt3a and Wnt5a, the Wnt-signaling downstream targets Axin2, and CyclinD1, as well as the activation of the intracellular signaling kinases Akt and GSK3β was performed in an in vitro cell culture model of Barrett’s esophagus. Representing the Barrett’s sequence, we used normal esophageal squamous epithelium (EPC-1, EPC-2), metaplasia (CP-A) and dysplasia (CP-B) to esophageal adenocarcinoma (EAC) cell lines (OE33, OE19) and primary specimens of squamous epithelium, metaplasia and EAC. Results: A loss of Wnt3a expression was observed beginning from the metaplastic cell line CP-A towards dysplasia (CP-B) and EAC (OE33 and OE19), confirmed by a lower staining index of WNT3A in Barrett’s metaplasia and EAC, than in squamous epithelium specimens. Frizzled 1–10 expression analysis revealed a distinct expression pattern, showing the highest expression for Fzd2, Fzd3, Fzd4, Fzd5, Fzd7, and the co-receptor LRP5/6 in EAC cells, while Fzd3 and Fzd7 were rarely expressed in primary specimens from squamous epithelium.
    [Show full text]
  • Genetic Evidence That Celsr3 and Celsr2, Together with Fzd3, Regulate Forebrain Wiring in a Vangl-Independent Manner
    Genetic evidence that Celsr3 and Celsr2, together with Fzd3, regulate forebrain wiring in a Vangl-independent manner Yibo Qua, Yuhua Huanga, Jia Fenga, Gonzalo Alvarez-Boladob, Elizabeth A. Grovec, Yingzi Yangd, Fadel Tissire, Libing Zhoua,f,1,2, and Andre M. Goffinete,1,2 aGuangdong–Hong Kong–Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; bDepartment of Neuroanatomy, Heidelberg University, D-69120 Heidelberg, Germany; cNeuroscience, The University of Chicago, Chicago, IL 60637; dNational Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; eWELBIO - Walloon Excellence in Life Sciences and Biotechnology and Institute of Neuroscience, University of Louvain, B1200 Brussels, Belgium; and fState Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Edited* by Jeremy Nathans, The Johns Hopkins University, Baltimore, MD, and approved June 18, 2014 (received for review February 3, 2014) Celsr3 and Fzd3, members of “core planar cell polarity” (PCP) AC contains commissural axons from the anterior olfactory nu- genes, were shown previously to control forebrain axon guidance clei and from the temporal cortex, which cross the midline at and wiring by acting in axons and/or guidepost cells. Here, we embryonic day 13.5 (E13.5) to E14.5 (11–14). The IC contains show that Celsr2 acts redundantly with Celsr3, and that their com- three main axonal components. Thalamocortical axons (TCA) bined mutation mimics that of Fzd3. The phenotypes generated emerge from the thalamus—formerly called “dorsal” thalamus upon inactivation of Fzd3 in different forebrain compartments are (15)—at E12.5. They run through the prethalamus (former similar to those in conditional Celsr2-3 mutants, indicating that “ventral” thalamus), turn and cross the diencephalon–telen- Fzd3 and Celsr2-3 act in the same population of cells.
    [Show full text]