Kenneth Martin Rosenberg Email: [email protected], [email protected] 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201

Total Page:16

File Type:pdf, Size:1020Kb

Kenneth Martin Rosenberg Email: Kenneth.Rosenberg@Som.Umaryland.Edu, Kenny.M.Rosenberg@Gmail.Com 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201 The impact of the non-immune chemiome on T cell activation Item Type dissertation Authors Rosenberg, Kenneth Publication Date 2020 Abstract T cells are critical organizers of the immune response and rigid control over their activation is necessary for balancing host defense and immunopathology. It takes 3 signals provided by dendritic cells (DC) to fully activate a T cell response – T ce... Keywords signaling; T cell; T-Lymphocytes--immunology Download date 02/10/2021 13:41:58 Link to Item http://hdl.handle.net/10713/14477 Kenneth Martin Rosenberg Email: [email protected], [email protected] 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201 EDUCATION MD, University of Maryland, Baltimore, MD Expected May 2022 PhD, University of Maryland, Baltimore, MD December 2020 Graduate Program: Molecular Microbiology and Immunology (MMI) BS, University of Maryland, College Park, MD May 2013 Major: Bioengineering, cum laude University Honors Citation, Gemstone Citation RESEARCH EXPERIENCE UMSOM Microbiology and Immunology Baltimore, MD July 2016-present PhD Candidate Principal Investigator: Dr. Nevil Singh Thesis: The impact of the non-immune chemiome on T cell activation Examined environmental stimuli from classically “non-immune” sources – growth factors, hormones, neurotransmitters, etc. – act to modulate T cell signaling pathways and the functional effects of activating encounters with dendritic cells. UMSOM Anatomy and Neurobiology Baltimore, MD May-August 2015 Rotating student Principal Investigator: Dr. Asaf Keller Studied the role of descending modulation pathways on affective pain transmission. Performed tract- tracing experiments using targeted injection of Cholera toxin subunit B into the lateral parabrachial nucleus and ventrolateral periaqueductal gray of anesthetized transgenic mice. FDA Center for Devices and Radiological Health Laurel, MD July 2013-June 2014 ORISE Research Fellow in the Laboratory of Cardiovascular and Interventional Therapeutics Principal Investigators: Dr. Bill Pritchard and Dr. John Karanian Studied the factors that contribute to endovascular implant failure. Analyzed CT angiograms using image-based geometric modeling techniques to characterize the in vivo loading environment in major blood vessels and cardiac structures. Assisting in imaging of animal subjects and other various surgical procedures. UMD Clark School of Engineering College Park, MD May 2012-May 2013 Orthopedic Mechanobiology Lab Faculty Mentor: Dr. Adam Hsieh, Department of Bioengineering Studied the role of the pericellular matrix in the mechanotransduction processes of human mesenchymal stem cells undergoing chondrogenesis. Analysis included real-time RT-PCR and immunofluorescence imaging techniques. Received an HHMI Undergraduate Fellowship to fund this research beginning spring 2013. Senior Capstone Project College Park, MD Fall 2012-Spring 2013 Physician Mentor: Dr. Ashutosh Sachdeva, University of Maryland Medical Center Faculty Mentor: Dr. Keith Herold, Department of Bioengineering Worked with four students to develop a sensor system to measure the reocclusion of silicone tracheal stents. The sensor was designed to detect the changing capacitance across the stent caused by the buildup of mucus or granulation tissue. It then wirelessly transmits a digital signal to an Android smart phone where the user could be alerted to the measurement results. Gemstone-Team RODENT College Park, MD Fall 2010-Spring 2013 Faculty Mentor: Dr. Brian Bequette, Department of Animal and Avian Sciences Collaborated with eleven students and a faculty mentor to perform research studying the underlying metabolic dysregulation associated with obesity using a mouse model. Was responsible for care of the mice as well as several lab procedures including dissections and sample processing. Received research grants from HHMI and ACCIAC. NIH National Institute on Aging Baltimore, MD Summer 2011 Summer Intern in the MRI and Spectroscopy Section of the Laboratory of Clinical Investigation Principal Investigator: Dr. Richard Spencer Studied the efficacy of diagnosing cartilage degradation using multiple MRI parameter analysis. TEACHING EXPERIENCE UMB, Dept. of Microbiology and Immunology Baltimore, MD Summer 2020 Lecturer – Overview of Immunology Summer Course Gave lectures regarding T cell antigen recognition and transplant immunology as part of a three- week virtual immunology course for summer internship students as well as incoming and current graduate students. University of Maryland SOM Baltimore, MD Fall 2018, Fall 2019 Small group leader – Host Defense and Infectious Diseases Led second year medical student discussion sections covering CAR-T cell therapy, virology basics, HPV vaccination, and Zika virus pathogenesis. Served as a leader for 4 sessions in 2018 and 3 in 2019. UMB Molecular Microbiology and Immunology Baltimore, MD Fall 2018, Fall 2019 Lecturer and discussion leader – Advances in Immunology Gave the Neuroimmunology overview lecture, including a history of the field and summary of recent literature highlighting the breadth of the field. Additionally, worked with a student in the course to select and present a paper discussion covering 2-3 recent journal articles. Was invited back to serve in the same role in fall of 2019. University of Maryland CMNS College Park, MD Fall 2011, Spring 2013 Undergraduate Teaching Assistant - Introduction to Genetics Fall 2011 - Led a class of 20 students in weekly discussion and held weekly office hours. Aided in the proctoring and grading of exams as well as graded other class assignments. Spring 2013 - Transitioned to a different role in which I managed the online resources available to the students and wrote weekly quizzes for students in all sections. Continued to maintain weekly office hours and aid in the proctoring and grading of exams. UNIVERSITY SERVICE UMB Molecular Microbiology and Immunology Admissions Committee Fall 2019-Spring 2020 Student representative and interviewer University of Maryland MSTP Admissions and Advisory Committee Fall 2016-Spring 2018 Student representative and interviewer University of Maryland School of Medicine Admissions Fall 2015-Spring 2016 Student interviewer University of Maryland School of Medicine Fall 2014-Spring 2016 Class of 2018 Class Council Treasurer PUBLICATIONS Rosenberg, KM, Singh, NJ. (2019) “Mouse T cells express a neurotransmitter-receptor signature that is quantitatively modulated in a subset- and activation-dependent manner.” Brain, Behavior, and Immunity. 80:275-285 Rosenberg, KM, Singh, NJ. VIP inhibits TCR-mediated ERK signaling to drive altered CD4 activation and differentiation. [Manuscript in prep] Fioretti S, Matson CA, Rosenberg KM, Singh NJ. Dynamic downregulation of CD19 by B cells underlies the escape phenotype after anti-CD19 directed immunotherapy. [Manuscript in prep] ABSTRACTS & PRESENTATIONS Oral Presentations Rosenberg, KM, Singh, NJ. “Neuronal regulation of immunity via T cell subset-specific neurotransmitter receptors.” Graduate Student Symposium, June 2019, UMB, Baltimore, MD. Rosenberg, KM, Singh, NJ. “Differential expression of neurotransmitter receptors by T cell subsets modifies their antigen-specific activation.” Graduate Student Symposium, June 2019, UMB, Baltimore, MD. Rosenberg, KM, Singh, NJ. “Subset-specific neurotransmitter receptor expression tunes T cell activation.” American Association of Immunologists: Immunology 2018. May 2018; Austin, TX. Rosenberg, KM, Singh, NJ. “A potential codex for neuronal regulation of peripheral T cells.” Graduate Student Symposium, June 2019, UMB, Baltimore, MD. Rosenberg, KM, Singh, NJ. “Neurotransmitters in the regulation of T cell function.” University of Maryland MSTP Summer Research Symposium. August 2016; Baltimore, MD. Rosenberg, KM, Keller, A. “Descending modulation of affective pain pathways.” University of Maryland MSTP Summer Research Symposium. August 2015; Baltimore, MD. Posters Rosenberg, KM, Singh, NJ. “Expression of T cell-subset-specific signatures of neurotransmitter receptors allows the nervous system to fine tune immune activation.” MD/PhD National Student Conference. July, 2019; Copper Mountain, CO. Rosenberg, KM, Singh, NJ. “Subset-specific neurotransmitter receptor expression tunes T cell activation.” American Association of Immunologists: Immunology 2018. May 2018; Austin, TX. Rosenberg, KM, Singh, NJ. “Families of neurotransmitter receptors are differentially regulated across T cell subsets.” American Association of Immunologists: Immunology 2017. May 2017; Washington, DC. Rosenberg, KM, Gregg, K, Leonard, S, Ries, S, Karanian, JW, Pritchard, WF. “Geometry and Motion of the Aortic Arch Across Species: Implications for Stent-Graft Device Evaluation and Development.” FDA CDRH Summer Student Poster Symposium. August 2013; White Oak, MD. Rosenberg, KM, Twomey, JD, Hsieh, AH. “Role of the pericellular matrix in the mechanotransduction pathways of hMSCs undergoing chondrogenesis.” HHMI Research Fellowship Program 14th Annual Research Symposium, University of Maryland. April 2013; College Park, MD. GRANTS University of Maryland MSTP T32 trainee Fall 2015-Spring 2016 Maryland-HHMI Undergraduate Research Fellowship Spring 2013 HONORS & AWARDS AAI Immunology 2018 – Trainee Abstract Award May 2018 University of Maryland Banneker/Key Scholar Fall 2009-Spring 2013 Abstract Title of Dissertation: The impact of the non-immune chemiome on T cell activation Kenneth M. Rosenberg, Doctor of Philosophy, 2020 Dissertation Directed by: Nevil
Recommended publications
  • Downloaded from the National Database for Autism Research (NDAR)
    International Journal of Molecular Sciences Article Phenotypic Subtyping and Re-Analysis of Existing Methylation Data from Autistic Probands in Simplex Families Reveal ASD Subtype-Associated Differentially Methylated Genes and Biological Functions Elizabeth C. Lee y and Valerie W. Hu * Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-994-8431 Current address: W. Harry Feinstone Department of Molecular Microbiology and Immunology, y Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA. Received: 25 August 2020; Accepted: 17 September 2020; Published: 19 September 2020 Abstract: Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group.
    [Show full text]
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • 309 Molecular Role of Dopamine in Anhedonia Linked to Reward
    [Frontiers In Bioscience, Scholar, 10, 309-325, March 1, 2018] Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti- reward systems Mark S. Gold8, Kenneth Blum,1-7,10 Marcelo Febo1, David Baron,2 Edward J Modestino9, Igor Elman10, Rajendra D. Badgaiyan10 1Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA, 2Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of South- ern California, Los Angeles, CA, USA, 3Global Integrated Services Unit University of Vermont Center for Clinical and Translational Science, College of Medicine, Burlington, VT, USA, 4Department of Addiction Research, Dominion Diagnostics, LLC, North Kingstown, RI, USA, 5Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India, 6Division of Neuroscience Research and Therapy, The Shores Treatment and Recovery Center, Port St. Lucie, Fl., USA, 7Division of Nutrigenomics, Sanus Biotech, Austin TX, USA, 8Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo, USA, 9Depart- ment of Psychology, Curry College, Milton, MA USA,, 10Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, OH ,USA. TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Anhedonia and food addiction 4. Anhedonia in RDS Behaviors 5. Anhedonia hypothesis and DA as a “Pleasure” molecule 6. Reward genes and anhedonia: potential therapeutic targets 7. Anti-reward system 8. State of At of Anhedonia 9. Conclusion 10. Acknowledgement 11. References 1. ABSTRACT Anhedonia is a condition that leads to the loss like “anti-reward” phenomena. These processes of feelings pleasure in response to natural reinforcers may have additive, synergistic or antagonistic like food, sex, exercise, and social activities.
    [Show full text]
  • Mechanisms of Acetylcholine Receptor Loss in Myasthenia Gravis
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.43.7.601 on 1 July 1980. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1980, 43, 601-610 Mechanisms of acetylcholine receptor loss in myasthenia gravis DANIEL B DRACHMAN, ROBERT N ADAMS, ELIS F STANLEY, AND ALAN PESTRONK From the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA SUMMARY The fundamental abnormality affecting the neuromuscular junctions of myasthenic patients is a reduction of available AChRs, due to an autoimmune attack directed against the receptors. Antibodies to AChR are present in most patients, and there is evidence that they have a predominant pathogenic role in the disease, aided by complement. The mechanism of antibody action involves acceleration of the rate of degradation of AChRs, attributable to cross-linking of the receptors. In addition, antibodies may block AChRs, and may participate in producing destructive changes, perhaps in conjunction with complement. The possibility that cell-mediated mechanisms may play a role in the autoimmune responses of some myasthenic patients remains to be explored. Although the target of the autoimmune attack in myasthenic patients is probably always the acetyl- Protected by copyright. choline receptors, it is not yet clear which of these immune mechanisms are most important. It is likely that the relative role of each mechanism varies from patient to patient. One of the goals of future research will be to identify the relative importance of each
    [Show full text]
  • Supplementary Table 6
    Supplementary Table S6: Increased expression of genes regulating synaptic signal transduction in the cancerous prostate of nicotine‐treated TRAMP mice SAM‐based analysis comparing gene expression in the cancerous prostate of nicotine‐treated versus untreated animals (reference group) Gene Name Gene ID Gene Name Fold Change FDR or q‐value(%) amphiphysin 10403796 Amph 2.605910617 10.5 ankyrin repeat and sterile alpha motif domain containing 1B 10365682 Anks1b 2.223828912 11.6 bassoon 10596880 Bsn 1.621655534 9.3 cerebellin 1 precursor protein; similar to precerebellin‐1 10580469 Cbln1 1.896906804 14.1 cholinergic receptor, nicotinic, alpha polypeptide 4 10490559 Chrna4 1.710195671 18.7 cholinergic receptor, nicotinic, beta polypeptide 2 (neuronal) 10499643 Chrnb2 2.151887416 8.9 cytoplasmic FMR1 interacting protein 2 10385391 Cyfip2 1.849650381 15.2 Fas apoptotic inhibitory molecule 2 10432492 Faim2 1.698617007 11.3 gamma‐aminobutyric acid (GABA) B receptor, 2; similar to ortholog of human G protein‐coupled receptor 51 GPR51 10512807 Gabbr2 1.553464421 20.6 gamma‐aminobutyric acid (GABA) A receptor, subunit alpha 2; similar to Gamma‐aminobutyric‐acid receptor subunit alpha‐2 precursor (GABA(A) receptor subunit alpha‐2) 10530406 Gabra2 1.501235592 25 gamma‐aminobutyric acid (GABA) A receptor, subunit beta 1 10522324 Gabrb1 1.729684369 11.6 gamma‐aminobutyric acid (GABA) A receptor, subunit beta 3 10553773 Gabrb3 3.07055831 10.9 gamma‐aminobutyric acid (GABA) A receptor, subunit gamma 2 10385283 Gabrg2 1.736988738 14.1 gamma‐aminobutyric acid
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Intramolecular Allosteric Communication in Dopamine D2 Receptor Revealed by Evolutionary Amino Acid Covariation
    Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation Yun-Min Sunga, Angela D. Wilkinsb, Gustavo J. Rodrigueza, Theodore G. Wensela,1, and Olivier Lichtargea,b,1 aVerna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and bDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 Edited by Brian K. Kobilka, Stanford University School of Medicine, Stanford, CA, and approved February 16, 2016 (received for review August 19, 2015) The structural basis of allosteric signaling in G protein-coupled led us to ask whether ET could also uncover couplings among receptors (GPCRs) is important in guiding design of therapeutics protein sequence positions not in direct contact. and understanding phenotypic consequences of genetic variation. ET estimates the relative functional sensitivity of a protein to The Evolutionary Trace (ET) algorithm previously proved effective in variations at each residue position using phylogenetic distances to redesigning receptors to mimic the ligand specificities of functionally account for the functional divergence among sequence homologs distinct homologs. We now expand ET to consider mutual informa- (25, 26). Similar ideas can be applied to pairs of sequence positions tion, with validation in GPCR structure and dopamine D2 receptor to recompute ET as the average importance of the couplings be- (D2R) function. The new algorithm, called ET-MIp, identifies evolu- tween a residue and its direct structural neighbors (27). To measure tionarily relevant patterns of amino acid covariations. The improved the evolutionary coupling information between residue pairs, we predictions of structural proximity and D2R mutagenesis demon- present a new algorithm, ET-MIp, that integrates the mutual in- strate that ET-MIp predicts functional interactions between residue formation metric (MIp) (5) to the ET framework.
    [Show full text]
  • Lysophosphatidic Acid Signaling in the Nervous System
    Neuron Review Lysophosphatidic Acid Signaling in the Nervous System Yun C. Yung,1,3 Nicole C. Stoddard,1,2,3 Hope Mirendil,1 and Jerold Chun1,* 1Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA 2Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA 3Co-first author *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2015.01.009 The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural pro- cesses and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states. Introduction LPA synthesis/degradative enzymes (reviewed in Sigal et al., The human brain is composed of approximately 60%–70% lipids 2005; Brindley and Pilquil, 2009; Perrakis and Moolenaar, by dry weight (Svennerholm et al., 1994). These lipids can be 2014). In view of the broad neurobiological influences of LPA divided into two major pools, structural and signaling, which signaling, its dysregulation may lead to diverse neuropathologies include well-known families such as cholesterol, fatty acids, ei- (Bandoh et al., 2000; Houben and Moolenaar, 2011; Yung et al., cosanoids, endocannabinoids, and prostaglandins (Figure 1).
    [Show full text]
  • Protease Effects on the Structure of Acetylcholine Receptor Membranes from Torpedo Californica
    PROTEASE EFFECTS ON THE STRUCTURE OF ACETYLCHOLINE RECEPTOR MEMBRANES FROM TORPEDO CALIFORNICA MICHAEL W. KLYMKOWSKY, JOHN E . HEUSER, and ROBERT M. STROUD From the Department of Biochemistry & Biophysics, University of California at San Francisco, San Francisco, California 94143 . Dr . Klymkowsky's present address is MRC Neuroimmunology Project, Department of Zoology, University College London, London WC IE, 6BT, England ABSTRACT Protease digestion of acetylcholine receptor-rich membranes derived from Torpedo californica electroplaques by homogenization and isopycnic centrifugation results in degradation of all receptor subunits without any significant effect on the appearance in electron micrographs, the toxin binding ability, or the sedimentation value of the receptor molecule . Such treatment does produce dramatic changes in the morphology of the normally 0.5- to 2-lm-diameter spherical vesicles when observed by either negative-stain or freeze-fracture electron microscopy . Removal of peripheral, apparently nonreceptor polypeptides by alkali stripping (Neubig et al ., 1979, Proc. Natl. Acad. Sci. U. S. A. 76:690-694) results in increased sensitivity of the acetylcholine receptor membranes to the protease trypsin as indicated by SDS gel electrophoretic patterns and by the extent of morphologic change observed in vesicle structure . Trypsin digestion of alkali-stripped receptor membranes results in a limit degradation pattern of all four receptor subunits, whereupon all the vesicles undergo the morphological transformation to minivesicles
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Ligand-Gated Ion Channels' British Journal of Pharmacology, Vol
    Edinburgh Research Explorer The Concise Guide to PHARMACOLOGY 2015/16 Citation for published version: Alexander, SP, Peters, JA, Kelly, E, Marrion, N, Benson, HE, Faccenda, E, Pawson, AJ, Sharman, JL, Southan, C, Davies, JA & CGTP Collaborators 2015, 'The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels' British Journal of Pharmacology, vol. 172, no. 24, pp. 5870-5903. DOI: 10.1111/bph.13350 Digital Object Identifier (DOI): 10.1111/bph.13350 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels. British Journal of Pharmacology (2015) 172, 5870–5903 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Ligand-gated ion channels Stephen PH Alexander1,
    [Show full text]