AMD Sempron™ Processor Product Brief

Total Page:16

File Type:pdf, Size:1020Kb

AMD Sempron™ Processor Product Brief AMD Sempron™ Processor Product Brief AMD Sempron™ Processor Overview The AMD Sempron™ processor performs at the top of its class when running the home and business applications that you need most. The AMD Sempron™ processor’s full-featured capabilities can include HyperTransport™ technology, up to 512k total high-performance cache, advanced 333Mhz front-side bus, 3DNow! Professional technology, and an integrated DDR memory controller. The AMD Sempron™ processor provides the productivity enhancing performance you need for your everyday applications. It runs over 60,000 of the world’s most popular applications, so you can enjoy solid performance. With 35 years of design and manufacturing experience and shipments of more than 240 million PC processors, you can count on AMD to provide reliable solutions for your home or business. Best-in-class Performance • The AMD Sempron processor performs at the top of its class on the home and business applications that you need most. • The AMD Sempron processor is designed for day-to-day computing and beyond. Full-Featured to Improve your Computing Experience • The AMD Sempron processor lets you enjoy a dynamic Internet experience with smooth streaming video and audio. • The AMD Sempron processor saves you time and effort; enabling your system to boot and load your applications quickly. • Applications that allow you to communicate with family, friends and colleagues will run smoothly with the AMD Sempron processor. The AMD Sempron™ processor’s advanced architectural features help ensure best-in-class performance and full-featured capability. These features include: • HyperTransport technology • Up to 512K total high-performance, full-speed cache • Advanced 333MHz front-side bus • 3DNow! Professional technology (72 instructions, full SSE compatibility) • Integrated DDR memory controller on certain models Compatible with Leading Operating Systems and Over 60,000 of the World’s Most Popular Software Applications • The AMD Sempron processor runs with over 60,000 of the world’s most popular software applications, enabling you to enjoy solid performance no matter what your computing needs. • It is compatible with Microsoft Windows XP Professional, Windows XP Home Edition, Windows® XP, Windows 98, Windows Me, Windows NT®, and Windows 2000, as well as Linux and other PC operating systems. • The AMD Sempron processor allows you to take advantage of a wide variety of connected digital devices and their content. Reliability from an Industry Leader • AMD is an industry leader that is dedicated to enabling you to get the job done at work or at play. • AMD is constantly striving to find the right solutions for you and your home or business needs. • AMD’s superior quality and track record have long been recognized by a number of the industry’s top publications, organizations and high-tech experts. AMD products, technology, manufacturing, facilities, executives and corporate and community programs have earned a multitude of awards and recognition over the years. AMD Sempron Processor Model Numbers • AMD Sempron processors are identified by a 4-digit model number. • AMD model numbers, based on a wide range of popular industry-standard benchmarks, are a simple, accurate representation of relative AMD processor performance. The higher the model number in a family of AMD processors, the better the overall software performance. • The "+" at the end of each model number indicates the added performance benefits delivered by AMD's innovative processor designs. AMD Sempron™ Processor Product Comparison AMD Sempron™ Processor Model Number Frequency L2 Cache 3100+ 1.8 Ghz 256KB (exclusive) 2800+ 2.0 Ghz 256KB (exclusive) 2600+ 1.833 Ghz 256KB (exclusive) 2500+ 1.750 Ghz 256KB (exclusive) 2400+ 1.667 Ghz 256KB (exclusive) 2300+ 1.583 Ghz 256KB (exclusive) 2200+ 1.5 Ghz 256KB (exclusive) DT AMD Sempron™ Features Intel Celeron® D Processor Total Processor-To-System System Bus: up to 6.4 GB/s Memory Controller: up to 3.2 GB/s Total: up to 3.2 GB/s Bandwidth Total: up to 9.6GB/s 3DNow!™ Professional technology, SSE, SSE2 3D and Multimedia Instructions SSE2 L2: 256KB (Inclusive) L2: 256KB (exclusive) Total Effective Cache: L2 Cache Total Effective Cache: 384KB 256KB L1 Cache (Instruction + Data) 128KB (64KB + 64KB) 28KB Process Technology 130 nanometer technology 130 nanometer Thermal Design Power 62W 68.4W Packaging Socket A & 754-pin Socket 478 pin PPGA .
Recommended publications
  • 2004 Gamers' Hardware Upgrade Guide
    Ace’s Hardware 2004 Gamers’ Hardware Upgrade Guide 2004 Gamers’ Hardware Upgrade Guide By Johan De Gelas – January 2004 Introduction Last week, we showed you a preview of the Athlon 64 3400+. Today, we'll investigate this new CPU as an upgrade to an existing system. How much performance do you gain when upgrading? What about the other features aside from performance, such as Cool'n'Quiet and more thermal and mechanical safety? As always, we start with a base system to be upgraded. This time around, our base system is equipped with an Athlon XP 2100+, as previous polls among our readers show that the faster versions of the Athlon XP "Palomino" were very popular in the early days of 2003. Now in 2004, Palomino is getting a little long in the tooth, so it's interesting to know whether or not an upgrade may be worthwhile. Our old system also contains a GeForce Ti 4200 and 512 MB of DDR266 (PC2100) memory. We will upgrade the CPU (to the Athlon 4 3400+) and memory (to DDR400 CAS 2) and compare that upgrade with one that simply upgrades the video card. As mentioned previously, we've done this before in many of our Gamer's Upgrade Guides. However, the gaming industry is not sitting still, and we are moving from hybrid DirectX 7/8 games to DirectX 8/9 games, which - as you will see - behave quite differently. The games you'll see tested in detail today are Halo 1.03, Return to Castle Wolfenstein: Enemy Territory, and X²- The Threat.
    [Show full text]
  • Thermal and Electrical Specification of AMD Semprontm Processors
    Thermal and Electrical Specification of AMD SempronTM Processors Thermal and Electrical Specification of AMD SempronTM Processors 27 September 2004 Page 1/5 Thermal and Electrical Specification of AMD SempronTM Processors ©2004 Advanced Micro Devices Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products and are for information purposes only. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppels or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN OR FOR THE PERFORMANCE OR OPERATION OF ANY PERSON’S SYSTEM, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, DAMAGE TO OR DESTRUCTION OF PROPERTY, OR LOSS OF PROGRAMS OR OTHER DATA, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Family 12H AMD Sempron Processor Product Data Sheet
    Family 12h AMD Sempron™ Processor Product Data Sheet Publication # 50321 Revision: 3.00 Issue Date: December 2011 Advanced Micro Devices © 2011 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD Arrow logo, AMD PowerNow!, 3DNow!, AMD Virtualization, AMD-V, Sempron, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
    [Show full text]
  • Communication Theory II
    Microprocessor (COM 9323) Lecture 2: Review on Intel Family Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17th, 2016 1 Text Book/References Textbook: 1. The Intel Microprocessors, Architecture, Programming and Interfacing, 8th edition, Barry B. Brey, Prentice Hall, 2009 2. Assembly Language for x86 processors, 6th edition, K. R. Irvine, Prentice Hall, 2011 References: 1. Computer Architecture: A Quantitative Approach, 5th edition, J. Hennessy, D. Patterson, Elsevier, 2012. 2. The 80x86 Family, Design, Programming and Interfacing, 3rd edition, Prentice Hall, 2002 3. The 80x86 IBM PC and Compatible Computers, Assembly Language, Design, and Interfacing, 4th edition, M.A. Mazidi and J.G. Mazidi, Prentice Hall, 2003 2 Lecture Objectives 1. Provide an overview of the various 80X86 and Pentium family members 2. Define the contents of the memory system in the personal computer 3. Convert between binary, decimal, and hexadecimal numbers 4. Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and ASCII data 5. Understand basic computer terminology (bit, byte, data, real memory system, protected mode memory system, Windows, DOS, I/O) 3 Brief History of the Computers o1946 The first generation of Computer ENIAC (Electrical and Numerical Integrator and Calculator) was started to be used based on the vacuum tube technology, University of Pennsylvania o1970s entire CPU was put in a single chip. (1971 the first microprocessor of Intel 4004 (4-bit data bus and 2300 transistors and 45 instructions) 4 Brief History of the Computers (cont’d) oLate 1970s Intel 8080/85 appeared with 8-bit data bus and 16-bit address bus and used from traffic light controllers to homemade computers (8085: 246 instruction set, RISC*) o1981 First PC was introduced by IBM with Intel 8088 (CISC**: over 20,000 instructions) microprocessor oMotorola emerged with 6800.
    [Show full text]
  • SCAPP Package Spectrum CUDA Access for Parallel Programming
    SCAPP Package Spectrum CUDA Access for Parallel Programming for M4i and M2p cards, English version April 12, 2019 SPECTRUM INSTRUMENTATION GMBH · AHRENSFELDER WEG 13-17 · 22927 GROSSHANSDORF · GERMANY PHONE: +49 (0)4102-6956-0 · FAX: +49 (0)4102-6956-66 · E-MAIL: [email protected] · INTERNET: www.spectrum-instrumentation.com (c) SPECTRUM INSTRUMENTATION GMBH AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH. Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation. LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation. MATLAB is a trademark/registered trademark of The Mathworks, Inc. Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc. Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc. FlexPro is a registered trademark of Weisang GmbH & Co. KG. PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG. PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group. PXI is a trademark of the PXI Systems Alliance. LXI is a registered trademark of the LXI Consortium. IVI is a registered trademark of the IVI Foundation Oracle and Java are registered trademarks of Oracle and/or its affiliates. Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation. AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
    [Show full text]
  • Motherboard Basics
    MOTHERBOARD BASICS A recent Tech Tip covered the basics of selecting a computer caseand made mention of the various sizes that correspond to motherboards of different form factors. A few people wrote in expressing interest in understanding more about the basics of motherboards, and that’s exactly what this Tech Tip intends to address. A motherboard, also known as a main board, is the primary circuit board inside of a computer, and is where the central processing unit (CPU), memory, expansion slots, drives, and other peripheral devices are connected. The circuitry on a motherboard facilitates the communication between all of the devices in the computer, making them as critical to a system’s performance as items such as the CPU or memory. The core circuitry of a motherboard is referred to as its chipset, and generally the manufacturer of the motherboard is not the manufacturer of the chipset. Intel does produce motherboards with their own chipsets, but buying a motherboard brand such as Gigabyte, Biostar, and ASUS means getting a board with either a VIA, Nvidia, SIS, or Intel brand chipset. 1. Form Factor The different basic shapes and sizes of motherboards are categorized as form factors. There are several standard form factors available, but some of the more common ones found in desktop computers include: (http://www.formfactors.org/developer/specs/atx2_2.pdf), ATX (http://www.formfactors.org/developer/specs/matxspe1.2.pdf), Micro ATX (mATX) (http://www.formfactors.org/developer/specs/FlexATXaddn1_0.pdf) FlexATX (http://www.via.com.tw/en/initiatives/spearhead/mini-itx/) and Mini-ITX The basic sizes of each are as follows: ATX: 12" x 9.6" (305mm x 244mm) Micro ATX: 9.6" x 9.6" (244mm x 244mm) FlexATX: 9.0" x 7.5" (229mm x 191mm) Mini ITX: 6.7" x 6.7" (170mm x 170mm) ATX and mATX are by far the most popular motherboard sizes for desktop computers, and as seen in the list above, are also some of the largest.
    [Show full text]
  • 5 Microprocessors
    Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 5 Microprocessors “MEGAHERTZ: This is a really, really big hertz.” —DAVE BARRY In this chapter, you will learn or all practical purposes, the terms microprocessor and central processing how to Funit (CPU) mean the same thing: it’s that big chip inside your computer ■ Identify the core components of a that many people often describe as the brain of the system. You know that CPU CPU makers name their microprocessors in a fashion similar to the automobile ■ Describe the relationship of CPUs and memory industry: CPU names get a make and a model, such as Intel Core i7 or AMD ■ Explain the varieties of modern Phenom II X4. But what’s happening inside the CPU to make it able to do the CPUs amazing things asked of it every time you step up to the keyboard? ■ Install and upgrade CPUs 124 P:\010Comp\BaseTech\380-8\ch05.vp Friday, December 18, 2009 4:59:24 PM Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 Historical/Conceptual ■ CPU Core Components Although the computer might seem to act quite intelligently, comparing the CPU to a human brain hugely overstates its capabilities. A CPU functions more like a very powerful calculator than like a brain—but, oh, what a cal- culator! Today’s CPUs add, subtract, multiply, divide, and move billions of numbers per second.
    [Show full text]
  • AMD's Early Processor Lines, up to the Hammer Family (Families K8
    AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) Dezső Sima October 2018 (Ver. 1.1) Sima Dezső, 2018 AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) • 1. Introduction to AMD’s processor families • 2. AMD’s 32-bit x86 families • 3. Migration of 32-bit ISAs and microarchitectures to 64-bit • 4. Overview of AMD’s K8 – K10.5 (Hammer-based) families • 5. The K8 (Hammer) family • 6. The K10 Barcelona family • 7. The K10.5 Shanghai family • 8. The K10.5 Istambul family • 9. The K10.5-based Magny-Course/Lisbon family • 10. References 1. Introduction to AMD’s processor families 1. Introduction to AMD’s processor families (1) 1. Introduction to AMD’s processor families AMD’s early x86 processor history [1] AMD’s own processors Second sourced processors 1. Introduction to AMD’s processor families (2) Evolution of AMD’s early processors [2] 1. Introduction to AMD’s processor families (3) Historical remarks 1) Beyond x86 processors AMD also designed and marketed two embedded processor families; • the 2900 family of bipolar, 4-bit slice microprocessors (1975-?) used in a number of processors, such as particular DEC 11 family models, and • the 29000 family (29K family) of CMOS, 32-bit embedded microcontrollers (1987-95). In late 1995 AMD cancelled their 29K family development and transferred the related design team to the firm’s K5 effort, in order to focus on x86 processors [3]. 2) Initially, AMD designed the Am386/486 processors that were clones of Intel’s processors.
    [Show full text]
  • Processor Check Utility for 64-Bit Compatibility
    Processor Check Utility for 64-Bit Compatibility VMware Workstation Processor Check Utility for 64-Bit Compatibility VMware Workstation version 5.5 supports virtual machines with 64-bit guest operating systems, running on host machines with the following processors: • AMD™ Athlon™ 64, revision D or later • AMD Opteron™, revision E or later • AMD Turion™ 64, revision E or later • AMD Sempron™, 64-bit-capable revision D or later (experimental support) • Intel™ EM64T VT-capable processors (experimental support) When you power on a virtual machine with a 64-bit guest operating system, Workstation performs an internal check: if the host CPU is not a supported 64-bit processor, you cannot power on the virtual machine. VMware also provides this standalone processor check utility, which you can use without Workstation to perform the same check and determine whether your CPU is supported for virtual machines with 64-bit guest operating systems. Note: On hosts with EM64T VT-capable processors, you may not be able to power on a 64-bit guest, even though the processor check utility indicates that the processor is supported for 64- bit guests. VT functionality can be disabled via the BIOS, but the processor check utility cannot read the appropriate model-specific register (MSR) to detect that the VT functionality has been disabled in the BIOS. Note: In shopping for a processor that is compatible with Workstation 5.5 64-bit guests, you may be unable to determine the revision numbers of a given vendor's offering of AMD Athlon 64, Opteron, Turion 64, or Sempron processors. At this time, the only reliable way to determine whether any of these processors is a revision supported by Workstation 5.5, is by the manufacturing technology (CMOS): any of the AMD Athlon 64, Opteron, Turion 64, or Sempron processors whose manufacturing technology is 90nm SOI (.09 micron SOI) is compatible with Workstation 5.5 64-bit guests.
    [Show full text]
  • SMBIOS Specification
    1 2 Document Identifier: DSP0134 3 Date: 2019-10-31 4 Version: 3.4.0a 5 System Management BIOS (SMBIOS) Reference 6 Specification Information for Work-in-Progress version: IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF or its members. Because this document is a Work in Progress, this document may still change, perhaps profoundly and without notice. This document is available for public review and comment until superseded. Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback 7 Supersedes: 3.3.0 8 Document Class: Normative 9 Document Status: Work in Progress 10 Document Language: en-US 11 System Management BIOS (SMBIOS) Reference Specification DSP0134 12 Copyright Notice 13 Copyright © 2000, 2002, 2004–2019 DMTF. All rights reserved. 14 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15 management and interoperability. Members and non-members may reproduce DMTF specifications and 16 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17 time, the particular version and release date should always be noted. 18 Implementation of certain elements of this standard or proposed standard may be subject to third party 19 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22 inaccurate identification or disclosure of such rights, owners or claimants.
    [Show full text]
  • AMD Athlon Processor Model 4 Data Sheet
    Preliminary Information AMD AthlonTM Processor Model 4 Data Sheet Publication # 23792 Rev: K Issue Date: November 2001 Preliminary Information © 2000, 2001 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or war- ranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and prod- uct descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other applica- tion in which the failure of AMD’s product could create a situation where per- sonal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any Trademarks AMD, the AMD Arrow logo, AMD Athlon, AMD Duron, and combinations thereof, and 3DNow! are trademarks of Advanced Micro Devices, Inc. HyperTransport is a trademark of the HyperTransport Technology Consortium.
    [Show full text]
  • The Motherboard ‐ Chapter #5
    The Motherboard ‐ Chapter #5 Amy Hissom Key Terms Advanced Transfer Cache (ATC)— A type of L2 cache contained within the Pentium processor housing that is embedded on the same core processor die as the CPU itself. Audio/modem riser (AMR) — A specification for a small slot on a motherboard to accommodate an audio or modem riser card. A controller on the motherboard contains some of the logic for the audio or modem functionality. Back side bus — The bus between the CPU and the L2 cache inside the CPU housing. Bus speed — The speed, or frequency, at which the data on the motherboard is moving. Communication and networking riser (CNR) — A specification for a small expansion slot on a motherboard that accommodates a small audio, modem, or network riser card. CISC (complex instruction set computing) — Earlier CPU type of instruction set. Cooler — A combination cooling fan and heat sink mounted on the top or side of a processor to keep it cool. Discrete L2 cache — A type of L2 cache contained within the Pentium processor housing, but on a different die, with a cache bus between the processor and the cache. Dual-voltage CPU — A CPU that requires two different voltages, one for internal processing and the other for I/O processing. Execution Trace Cache — A type of Level 1 cache used by some CPUs to hold decoded operations waiting to be executed. Expansion bus — A bus that does not run in sync with the system clock. EPIC (explicitly parallel instruction computing) — The CPU architecture used by the Intel Itanium chip that bundles programming instructions with instructions on how to use multiprocessing abilities to do two instructions in parallel.
    [Show full text]