RMS Segment(S)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In-Room Dining
IN-ROOM DINING Phone Number: 518-628-5150 In-Room Dial: 204 BREAKFAST 8:00am - 10:30am | Thursday - Monday To Order: Call during hours of service and your food will be delivered to your door. The server will knock on your door to let you know that your meal has arrived. Limited outdoor dining is available, first come first serve. LUNCH 12:00pm - 3:00pm | Thursday - Monday To Order: Call during hours of service and your food will be delivered to your door. The server will knock on your door to let you know that your meal has arrived. Limited outdoor dining is available, first come first serve. SNACKS 3:00pm - 5:00pm | Thursday - Sunday To Order: Call during hours of service and your food will be delivered to your door. The server will knock on your door to let you know that your meal has arrived. Limited outdoor dining is available, first come first serve. DINNER 6:00pm - 9:00pm | Wednesday - Sunday To Order: Call during hours of service and your food will be delivered to your door. The server will knock on your door to let you know that your meal has arrived. Limited outdoor table reservations are available, check with the front desk. Dining on the Prospect deck is weather dependent. All In-Room Dining orders will be charged to your room + tax + 18% service fee. We kindly ask for all in-room dining orders to meet a minimum of $20. Please alert your server of any dietary restrictions or allergies. Eating raw or undercooked fish, shellfish, eggs or meat increases the risk of foodborne illness. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Apples Dwarf 6 86080-Fuji $35.99 6 23958-Gravenstein Red-$35.99 6 59580-Honeycrisp-$35.99 7 86082-Jonagold-$35.99 7
Apples Dwarf 6 86080-Fuji $35.99 6 23958-Gravenstein Red-$35.99 6 59580-Honeycrisp-$35.99 7 86082-Jonagold-$35.99 7 Apples Semi-Dwarf 7 13475-Akane-$34.99 7 80926-Amere de Berthcourt $28.99 7 86532-Calypso Redlove $28.99 8 86532-Odysso Redlove $28.99 8 13510-Cox Orange Pippin $34.99 8 13515-Empire-$34.99 9 13530-Fuji $34.99 9 13520-Fuji, Red $34.99 9 98808-Gala-$34.99 9 13555-Golden Delicious -$34.99 10 10010-Granny Smith-$34.99 10 13575-Gravenstein Red-$34.99 10 41238-Jonagold-$34.99 10 10006-Jonathon-$34.99 11 NEW 2020 86148-King David-$34.99 11 13600-King, Thompkins-$34.99 11 13605-Liberty -$34.99 12 27726-Pink Pearl-$34.99 12 98814-Waltana-$34.99 12 98817-Yellow Newton Pippin - $34.99 12 Apples Standard 13 13535-Fuji $31.99 13 Crabapple 13 80864-Dolgo $28.99 13 NEW 2020 86228-Firecracker $28.99 13 Multi Graft & Espalier Apples & Rootstock 14 13465-6N1 Multi-Graft Espalier $69.99 14 61672-Fuji Espalier. $64.99 14 98847- Gala Espalier. $64.99 14 61672-Golden Delicious Espalier. $64.99 14 1 86182-4-N-1 Combos - $64.99 14 17466-Apple Rootstock - $2.59 14 Apricots & Apriums Semi-Dwarf 15 13655-Harglow - $34.99 15 47548-Puget Gold - $32.99 15 83061-Tomcot - $39.99 15 Cherries Sweet Dwarf 15 86154-Bing $41.99 15 86156-Craigs Crimson $41.99 16 35936-Lapins $41.99 16 62618-Stella $42.99 16 Cherries Sweet Semi-Dwarf 16 NEW 2020 86230-Amarena de pescara $28.99 17 86154-Bing $39.99 17 80952-Governor Wood $28.99 17 82362-Lapins $39.99 17 67468-Rainier $39.99 18 NEW 2020 86162-Royal Crimson $42.99 18 80866-Royal Rainier $41.99 18 Cherry’s Sour -
Handling of Apple Transport Techniques and Efficiency Vibration, Damage and Bruising Texture, Firmness and Quality
Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences PUBLISHED BY: B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ACTIVITIES OF WP9 IN THE CENTRE OF EXCELLENCE AGROPHYSICS CONTRACT NO: QLAM-2001-00428 CENTRE OF EXCELLENCE FOR APPLIED PHYSICS IN SUSTAINABLE AGRICULTURE WITH THE th ACRONYM AGROPHYSICS IS FOUNDED UNDER 5 EU FRAMEWORK FOR RESEARCH, TECHNOLOGICAL DEVELOPMENT AND DEMONSTRATION ACTIVITIES GENERAL SUPERVISOR OF THE CENTRE: PROF. DR. RYSZARD T. WALCZAK, MEMBER OF POLISH ACADEMY OF SCIENCES PROJECT COORDINATOR: DR. ENG. ANDRZEJ STĘPNIEWSKI WP9: PHYSICAL METHODS OF EVALUATION OF FRUIT AND VEGETABLE QUALITY LEADER OF WP9: PROF. DR. ENG. BOHDAN DOBRZAŃSKI, JR. REVIEWED BY PROF. DR. ENG. JÓZEF KOWALCZUK TRANSLATED (EXCEPT CHAPTERS: 1, 2, 6-9) BY M.SC. TOMASZ BYLICA THE RESULTS OF STUDY PRESENTED IN THE MONOGRAPH ARE SUPPORTED BY: THE STATE COMMITTEE FOR SCIENTIFIC RESEARCH UNDER GRANT NO. 5 P06F 012 19 AND ORDERED PROJECT NO. PBZ-51-02 RESEARCH INSTITUTE OF POMOLOGY AND FLORICULTURE B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ©Copyright by BOHDAN DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES LUBLIN 2006 ISBN 83-89969-55-6 ST 1 EDITION - ISBN 83-89969-55-6 (IN ENGLISH) 180 COPIES, PRINTED SHEETS (16.8) PRINTED ON ACID-FREE PAPER IN POLAND BY: ALF-GRAF, UL. -
First International Conference on Mars Polar Science and Exploration
FIRST INTERNATIONAL CONFERENCE ON MARS POLAR SCIENCE AND EXPLORATION Held at The Episcopal Conference Center at Carnp Allen, Texas Sponsored by Geological Survey of Canada International Glaciological Society Lunar and Planetary Institute National Aeronautics and Space Administration Organizers Stephen Clifford, Lunar and Planetary Institute David Fisher, Geological Survey of Canada James Rice, NASA Ames Research Center LPI Contribution No. 953 Compiled in 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1998) Title of abstract. In First International Conference on Mars Polar Science and Exploration, p. xx. LPI Contribution No. 953, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No. 953 iii Preface This volume contains abstracts that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration, October 18-22? 1998. The Scientific Organizing Committee consisted of Terrestrial Members E. Blake (Icefield Instruments), G. Clow (U.S. Geologi- cal Survey, Denver), D. Dahl-Jensen (University of Copenhagen), K. Kuivinen (University of Nebraska), J. -
Apollo 12 Photography Index
%uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII. -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
INF03 Reduce Lists of Apple Varieites
ECE/TRADE/C/WP.7/GE.1/2009/INF.3 Specialized Section on Standardization of Fresh Fruit and Vegetables Fifty-fifth session Geneva, 4 - 8 May 2009 Items 4(a) of the provisional agenda REVISION OF UNECE STANDARDS Proposals on the list of apple varieties This note has been put together by the secretariat following the decision taken by the Specialized Section at its fifty-fourth session to collect information from countries on varieties that are important in international trade. Replies have been received from the following countries: Canada, Czech Republic, Finland, France, Germany, Italy, Netherlands, New Zealand, Poland, Slovakia, South Africa, Sweden, Switzerland and the USA. This note also includes the documents compiled for the same purpose and submitted to the fifty-second session of the Specialized Section. I. Documents submitted to the 52nd session of the Specialized Section A. UNECE Standard for Apples – List of Varieties At the last meeting the 51 st session of the Specialized Section GE.1 the delegation of the United Kingdom offered to coordinate efforts to simplify the list of apple varieties. The aim was to see what the result would be if we only include the most important varieties that are produced and traded. The list is designed to help distinguish apple varieties by colour groups, size and russeting it is not exhaustive, non-listed varieties can still be marketed. The idea should not be to list every variety grown in every country. The UK asked for views on what were considered to be the most important top thirty varieties. Eight countries sent their views, Italy, Spain, the Netherlands, USA, Slovakia, Germany Finland and the Czech Republic. -
All Roads in County (Updated January 2020)
All Roads Inside Deschutes County ROAD #: 07996 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 211009 Other Rural Local Dirt-Graded <null> County Road Length: 0 101ST LN ROAD #: 02265 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 101ST ST 0.262 END BULB 151204 Deschutes County Rural Local Macadam, Oil 0.262 Mat County Road Length: 0.262 101ST ST ROAD #: 02270 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 HWY 126 0.357 MAPLE LN, NW 151204 Deschutes County Rural Local Macadam, Oil 0.357 Mat 20 0.357 MAPLE LN, NW 1.205 95TH ST 151203 Deschutes County Rural Local Macadam, Oil 0.848 Mat County Road Length: 1.205 103RD ST ROAD #: 02259 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 151209 Local Access Road Rural Local AC <null> <null> <null> 151209 Unknown Rural Local AC <null> 40 2.75 BEGIN 3.004 COYNER AVE, 141228 Deschutes County Rural Local Macadam, Oil 0.254 NW Mat County Road Length: 0.254 105TH CT Page 1 of 975 \\Road\GIS_Proj\ArcGIS_Products\Road Lists\Full List 2020 DCRD Report 1/02/2020 ROAD #: 02261 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 QUINCE AVE, NW 0.11 END BUBBLE 151204 Deschutes County Rural Local Macadam, Oil 0.11 Mat County Road Length: 0.11 10TH ST ROAD #: 02188 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 151304 City of Redmond City Collector AC <null> <null> <null> 151309 City of Redmond City Local AC <null> <null> <null> 151304 City of Redmond City Collector Macadam, Oil <null> Mat <null> <null> 141333 City of Redmond Rural -
General Disclaimer One Or More of the Following Statements May
https://ntrs.nasa.gov/search.jsp?R=19690026252 2020-03-23T20:32:26+00:00Z General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) vss - T National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487 ST—PR—LS-10865 AUTOMATIC STATION ' ND-7" PHOTOGRAPHS THE MOON AND THE EARTH (TASS) PRESS RELEASE & PHOTOGRAVHS .3 0 ^ CC ::IGN f1 P1GEft1 lTHiiUI cI / >. O IC J^) ► IFJ.GLO) -1 s ^ ^e 7a? '9 INAr:. Cn 4R TMA ^A AL h.+F1UC RI iCAYEUGWrI 1 SEPTEMBER 1969 ST— PR-- LS— 108b5 AUIOMATIC STATION "ZOND-7" PHOTOGRAPHS THE MOON AND THE EARTH Tass Release and Photographs N.B. The best of all photographs s ,elected from the three news- published have been ^^a lec re,.f tor papers "PRAVDt,","KOMSOMOL'SKAYA this reproduction. -
Signature Redacted Signature of Author: Department of Earth, Atmospheric and Planetary Sciences August 1, 2014 Signature Redacted Certified By: Maria T
Judging a Planet by its Cover: Insights into Lunar Crustal Structure and Martian Climate History from Surface Features by MASSACHUSEr rS INTrrlJTE OF TECHN CLOGY Michael M. Sori 20RE B.S. in Mathematics, B.A. in Physics L C I Duke University, 2008 LIBRA RIES Submitted to the Department of Earth, Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Planetary Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2014 2014 Massachusetts Institute of Technology. All rights reserved. Signature redacted Signature of Author: Department of Earth, Atmospheric and Planetary Sciences August 1, 2014 Signature redacted Certified by: Maria T. Zuber E. A. Griswold Professor of Geophysics & Vice President for Research Signature redacted Thesis Supervisor Accepted by: Robert D. van der Hilst Schlumberger Professor of Earth Sciences Head, Department of Earth, Atmospheric and Planetary Sciences 2 Judging a Planet by its Cover: Insights into Lunar Crustal Structure and Martian Climate History from Surface Features By Michael M Sori Submitted to the Department of Earth, Atmospheric and Planetary Sciences on June 3, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Orbital spacecraft make observations of a planet's surface in the present day, but careful analyses of these data can yield information about deeper planetary structure and history. In this thesis, I use data sets from four orbital robotic spacecraft missions to answer longstanding questions about the crustal structure of the Moon and the climatic history of Mars. In chapter 2, I use gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to constrain the quantity and location of hidden volcanic deposits on the Moon.