Impacts and Control of Coal-Fired Power Station Emissions in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Impacts and Control of Coal-Fired Power Station Emissions in South Africa Impacts and control of coal-fired power station emissions in South Africa I Pretorius 25278215 Thesis submitted for the degree Philosophiae Doctor in Geography and Environmental Management Potchefstroom Campus of the North West University Promoter: Prof S J Piketh Co-promoter: Mr R P Burger November 2015 Dedication I dedicate this work to my parents, Willem and Christa Jansen van Rensburg. This is to thank you for always putting my education first. Without your love, patience and support I would not have been where I am today. You taught me by example to be curious about the world around me and to never stop learning. Abstract Contents Dedication ............................................................................................................................ 1 Abstract ................................................................................................................................ vi Preface................................................................................................................................. ix Glossary ............................................................................................................................. xiii List of tables ...................................................................................................................... xvii List of figures ...................................................................................................................... xix 1 Introduction and literature review ................................................................................. 1 1.1 The South African energy sector ........................................................................... 1 1.2 Drivers of energy demand ..................................................................................... 4 1.3 The South African air quality regulation philosophy ............................................... 5 1.4 Impacts of coal-fired power station emissions ....................................................... 6 1.4.1 Primary and secondary PM ............................................................................... 7 1.4.2 SO2 ................................................................................................................... 8 1.4.3 NOx ................................................................................................................... 8 1.4.4 Ozone ............................................................................................................... 9 1.4.5 Mercury ............................................................................................................. 9 1.4.6 Greenhouse gasses .........................................................................................10 1.4.7 Multiple pollutants.............................................................................................10 1.5 Coal-fired power station emission control .............................................................11 1.5.1 Pre-combustion cleaning ..................................................................................11 1.5.2 PM control ........................................................................................................11 1.5.3 NOx control .......................................................................................................12 1.5.4 SO2 control .......................................................................................................12 1.5.5 Mercury control ................................................................................................13 1.5.6 Proposed CO2 control .......................................................................................13 ii Abstract 1.5.7 Current control measures at South African coal-fired power stations ................14 1.6 Motivation for the research ...................................................................................16 1.7 Study aims and objectives ...................................................................................17 1.8 Organization of this document .............................................................................18 2 Data and methods.......................................................................................................19 2.1 Introduction ..........................................................................................................19 2.1.1 Journal article: A critical comparison of gaseous coal-fired large boiler emission estimation in South Africa ..................................................................................................19 2.1.2 Journal article: The impact of the South African energy crisis on emissions .....19 2.1.3 Journal article: A perspective of South African coal-fired power station emissions 19 2.1.4 Journal article: Emissions management and health exposure: Should all power stations be treated equal? ..................................................................................................20 2.2 Conclusion ...........................................................................................................44 3 Journal article: A critical comparison of gaseous coal-fired large boiler emission estimation in South Africa .........................................................................................................45 Thesis objective: .................................................................................................................46 Abstract ...............................................................................................................................46 3.1 Introduction ..........................................................................................................47 3.2 Emission estimation techniques for large boilers ..................................................48 3.2.1 Past plant-specific emission factor techniques (1982-1995) .............................48 3.2.2 Mass balance techniques (1995-March 2015/Current) .....................................50 3.3 CEMS ..................................................................................................................52 3.4 Methods comparison ............................................................................................52 3.4.1 Data quality ......................................................................................................54 3.5 Methods used internationally ...............................................................................58 3.6 Conclusions .........................................................................................................59 Thesis conclusion ................................................................................................................61 iii Abstract 3.7 References ..........................................................................................................62 4 Journal article: The impact of the South African energy crisis on emissions ................64 Thesis objective ..................................................................................................................65 Abstract ...............................................................................................................................65 4.1 Introduction ..........................................................................................................66 4.2 The energy crisis .................................................................................................67 4.3 The impact on coal-fired power station emissions ................................................69 4.4 The impact on OCGT emissions ..........................................................................72 4.5 The impact on domestic burning emissions .........................................................73 4.6 The impact on small backup generator emissions ................................................75 4.7 The impact on vehicle emissions .........................................................................75 4.8 Conclusions .........................................................................................................76 Thesis conclusion ................................................................................................................77 4.9 References ..........................................................................................................78 5 Journal article: A perspective on South African coal-fired power station emissions .....81 Thesis objective ..................................................................................................................82 Abstract ...............................................................................................................................82 5.1 Introduction ..........................................................................................................83 5.1.1 The South African power sector .......................................................................86 5.1.2 South African Coal Quality ...............................................................................87 5.2 Methods ...............................................................................................................87 5.2.1 Historical South African power station emissions..............................................87 5.2.2 Future emissions projections ............................................................................88 5.3 Emissions trends and projections
Recommended publications
  • EIA Project Consulting Team
    CURRICULUM VITAE CHEDA SHEILA MUNIONGO Profession : Environmental Consultant at Savannah Environmental Specialisation : Environmental Management & GIS Years experience : Four (environmental management), Six (GIS) KEY RESPONSIBILITIES Providing consulting services to clients for Environmental-related matters Conducting Environmental Impact Assessment (EIA) processes Preparation of EIA reports. Environmental Compliance Auditing and Environmental Control Officer (ECO) services Creating maps for various projects SKILLS BASE AND CORE COMPETENCIES EIA Reporting Site Investigations Environmental Auditing and compliance monitoring Co-ordination and management of project teams Co-ordinating and conducting Public Involvement processes. Administrative tasks (minutes of meetings) Research EDUCATION AND PROFESSIONAL STATUS Degrees: B Sc (Geography & Environmental Management) obtained from the University of Johannesburg in 2008 BSc (Hons) (Environmental Management) obtained from the University of South Africa in 2010 MSc (Environmental Management) – currently registered with the University of Johannesburg to be completed in 2015 Courses: Telephone impact training Microsoft access EMPLOYMENT 1. June 2008 – January 2011 Name of Employer: Shango Solution Position: GIS Consultant 2. February 2011 – May 2012 Name of Employer: Fourth Element Consulting Position: Assistant Environmental and GIS Practitioner 3. June 2012 – Present Name of Employer: Savannah Environmental Position: Environmental and GIS Consultant PROJECT EXPERIENCE: ENVIRONMENTAL IMPACT ASSESSMENTS 1. Scoping, EIA Report & EMP for the Roodepoort Strengthening 400kV substation & 400kV power lines near Roodepoort, Gauteng 2. Scoping, EIA Report & EMP for the Merapi Solar Energy Facility, near Excelsior Free State 3. Scoping, EIA Report & EMP for the Sannaspos Solar Energy Facility, near Bloemfontein Free State 4. Scoping, EIA Report & EMP for the Blackwood Solar Energy Facility near Boshof, Free State. 5. Scoping, EIA Report & EMP for the Boundary Solar Energy Facility near Boshof, Free State.
    [Show full text]
  • Sponsored by the Department of Science and Technology Volume
    Volume 26 Number 3 • August 2015 Sponsored by the Department of Science and Technology Volume 26 Number 3 • August 2015 CONTENTS 2 Reliability benefit of smart grid technologies: A case for South Africa Angela Masembe 10 Low-income resident’s preferences for the location of wind turbine farms in the Eastern Cape Province, South Africa Jessica Hosking, Mario du Preez and Gary Sharp 19 Identification and characterisation of performance limiting defects and cell mismatch in photovoltaic modules Jacqui L Crozier, Ernest E van Dyk and Frederick J Vorster 27 A perspective on South African coal fired power station emissions Ilze Pretorius, Stuart Piketh, Roelof Burger and Hein Neomagus 41 Modelling energy supply options for electricity generations in Tanzania Baraka Kichonge, Geoffrey R John and Iddi S N Mkilaha 58 Options for the supply of electricity to rural homes in South Africa Noor Jamal 66 Determinants of energy poverty in South Africa Zaakirah Ismail and Patrick Khembo 79 An overview of refrigeration and its impact on the development in the Democratic Republic of Congo Jean Fulbert Ituna-Yudonago, J M Belman-Flores and V Pérez-García 90 Comparative bioelectricity generation from waste citrus fruit using a galvanic cell, fuel cell and microbial fuel cell Abdul Majeed Khan and Muhammad Obaid 100 The effect of an angle on the impact and flow quantity on output power of an impulse water wheel model Ram K Tyagi CONFERENCE PAPERS 105 Harnessing Nigeria’s abundant solar energy potential using the DESERTEC model Udochukwu B Akuru, Ogbonnaya
    [Show full text]
  • Annual Performance Plan 2021-2022 to 2023-24
    ANNUAL PERFORMANCE PLAN (VOTE 41) FOR THE FISCAL YEARS 2021/22 TO 2023/24 Published by the Department of Water and Sanitation Private Bag X313 Pretoria 0001 South Africa Tel: +2712 336 7500 Fax: +2712 336 8664 This annual performance plan can be obtained from www.dws.gov.za 4 5 ANNUAL PERFORMANCE Plan (VOTE 41) FOR THE FISCAL YEARS 2021/22 TO 2023/24 Foreword by the Minister ...........................................................................................................................................................................i Message from the Deputy Minister .......................................................................................................................................................iii Overview of the Accounting Officer .......................................................................................................................................................v Official sign ...............................................................................................................................................................................................off vi List of abbreviations and acronyms ......................................................................................................................................................vii Strategic overview .................................................................................................................................................. 1 Strategy map of the DWS ...........................................................................................................................................................................1
    [Show full text]
  • Written Statement of Mxolisi Mgojo, the Chief Executive Officer Of
    1 PUBLIC ENTERPRISES PORTFOLIO COMMITTEE INQUIRY INTO ESKOM, TRANSNET AND DENEL WRITTEN STATEMENT OF MXOLISI MGOJO, THE CHIEF EXECUTIVE OFFICER OF EXXARO RESOURCES LIMITED INTRODUCTION ...................................................................................................... 2 COST-PLUS MINES VERSUS COMMERCIAL MINES .......................................... 5 THE SO-CALLED “PRE-PAYMENT” FOR COAL ................................................. 9 PREJUDICE TO EXXARO’S COST-PLUS MINES AND MAFUBE ..................... 11 Introduction ........................................................................................................... 11 Arnot mine ............................................................................................................. 12 Eskom’s failure to fund land acquisition ................................................................. 12 Non-funding of operational capital at Arnot ............................................................ 14 The termination of Arnot’s CSA .............................................................................. 15 Conclusion of the Arnot matters ............................................................................. 19 Mafube mine.......................................................................................................... 19 Matla mine ............................................................................................................. 21 Non-funding of capital of R1.8 billion for mine 1 ...................................................
    [Show full text]
  • Review of Existing Infrastructure in the Orange River Catchment
    Study Name: Orange River Integrated Water Resources Management Plan Report Title: Review of Existing Infrastructure in the Orange River Catchment Submitted By: WRP Consulting Engineers, Jeffares and Green, Sechaba Consulting, WCE Pty Ltd, Water Surveys Botswana (Pty) Ltd Authors: A Jeleni, H Mare Date of Issue: November 2007 Distribution: Botswana: DWA: 2 copies (Katai, Setloboko) Lesotho: Commissioner of Water: 2 copies (Ramosoeu, Nthathakane) Namibia: MAWRD: 2 copies (Amakali) South Africa: DWAF: 2 copies (Pyke, van Niekerk) GTZ: 2 copies (Vogel, Mpho) Reports: Review of Existing Infrastructure in the Orange River Catchment Review of Surface Hydrology in the Orange River Catchment Flood Management Evaluation of the Orange River Review of Groundwater Resources in the Orange River Catchment Environmental Considerations Pertaining to the Orange River Summary of Water Requirements from the Orange River Water Quality in the Orange River Demographic and Economic Activity in the four Orange Basin States Current Analytical Methods and Technical Capacity of the four Orange Basin States Institutional Structures in the four Orange Basin States Legislation and Legal Issues Surrounding the Orange River Catchment Summary Report TABLE OF CONTENTS 1 INTRODUCTION ..................................................................................................................... 6 1.1 General ......................................................................................................................... 6 1.2 Objective of the study ................................................................................................
    [Show full text]
  • Heritage Impact Assessments/Archaeological Impact Assessments
    PHASE 1 HIA REPORT AGRICULTURAL AND IRRIGATION DAM DEVELOPMENT, OLYVENHOUTS DRIFT SETTLEMENT, NORTHERN CAPE PROPOSED DEVELOPMENT OF AN IRRIGATION DAM AND AGRICULTURAL EXPANSION ON ERVEN 1074 AND 754, OLYVENHOUTS DRIFT SETTLEMENT, UPINGTON, DAWID KRUIPER MUNICIPALITY, Z.F. MGCAWU DISTRICT MUNICIPALITY, NORTHERN CAPE. PREPARED FOR: ENVIROAFRICA PREPARED BY: HEIDI FIVAZ & JAN ENGELBRECHT UBIQUE HERITAGE CONSULTANTS 03 NOVEMBER 2020 VERSION 2 Web: www.ubiquecrm.com Mail: [email protected] Office: (+27)0721418860 Address: P.O. Box 5022 Weltevredenpark 1715 CSD Supplier Number MAAA0586123 PHASE 1 HIA REPORT AGRICULTURAL AND IRRIGATION DAM DEVELOPMENT, OLYVENHOUTS DRIFT SETTLEMENT, NORTHERN CAPE Client: EnviroAfrica CC. P.O. Box 5367, Helderberg, 7135 Fax: 086 512 0154 / Tel: 021 8511616 / Email: [email protected] Contact Person: Bernard de Witt Email: [email protected] Heritage Consultant: UBIQUE Heritage Consultants Contact Person: Jan Engelbrecht (archaeologist and lead CRM specialist) Member of the Association of Southern African Professional Archaeologists: Member number: 297 Cell: (+27) 0828456276 Email: [email protected] Heidi Fivaz (archaeologist) Member of the Association of Southern African Professional Archaeologists: Member number: 433 Cell: (+27) 0721418860 Email: [email protected] For this project, Mr Engelbrecht was responsible for the field survey of the development footprint, identification of heritage resources, and recommendations. Ms Fivaz was responsible for research and report compilation. Declaration
    [Show full text]
  • Transmission Development Plan 2020-2029 FOREWORD by GROUP EXECUTIVE
    Transmission Development Plan 2020-2029 FOREWORD BY GROUP EXECUTIVE “As we do our best to meet our commitments in terms of the TDP, we will certainly face challenges; however, our hope is that, through collaboration, we can all own this plan and support its funding and execution in order to co-create an energy future in support of the economic growth of our country.” Segomoco Scheppers i FOREWORD BY GROUP EXECUTIVE The growth and development of our country’s economy to meet the growth in demand, and supply the future generation pattern. demands of a 21st century lifestyle relies heavily on a secure and With regard to cross-border Transmission inter connectors, our analysis reliable supply of electricity at affordable prices. It is obvious that people highlights the need to strengthen a number of our cross-border whose homes, workplaces, schools, and clinics are connected to the Transmission lines into neighbouring countries, in order to support grid for the first time will find their lives transformed for the better in increased cross-border electricity trade. This is expected to result in ways they could never previously have imagined. reduced upward pressure on tariffs and improved security of electricity supply both in South Africa and the region. The bulk of South Africa’s electricity is still produced by Eskom’s coal- fired power stations located in the coalfields of the Mpumalanga The benefits of a reliable and secure electricity supply to South Africa Highveld and near Lephalale, but the landscape for power generation is must be weighed against the associated costs to ensure that electricity rapidly changing.
    [Show full text]
  • Mercury Emissions from South Africa's Coal-Fired Power Stations
    Mercury emissions from South Africa’s coal-fired power stations Belinda L. Garnham*1 and Kristy E. Langerman1 1Eskom Holdings SOC Limited, Megawatt Park, 1Maxwell Drive, Sunninghill, Sandton, [email protected], [email protected] Received: 8 August 2016 - Reviewed: 3 October 2016 - Accepted: 2 November 2016 http://dx.doi.org/10.17159/2410-972X/2016/v26n2a8 Abstract Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources con- tribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016). Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mer- cury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s) from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations.
    [Show full text]
  • Cenyu Scoping Report
    EASTERN CAPE DEPARTMENT OF HOUSING Cenyu/ Cenyulands Housing Dev elopment Scoping Report December 2011 J29034A Arcus GIBB (Pty) Ltd Reg. 1992/007139/07 East London Office: 9 Pearce St reet , Berea , East London PROPOSED CENYU/ CENYULANDS HOUSING DEVELOPMENT DRAFT SCOPING REPORT CONTENTS Chapter Description Page 1 INTRODUCTION 1 1.1 Purpose of Report 1 1.2 EIA Process 1 2 PROPOSED ACTIVITY 5 2.1 Location of the proposed activity 5 2.2 Description of Proposed Activity 7 2.3 Roads 9 2.4 Stormwater Drainage 9 2.5 Bulk Water Supply and Reticulation 12 2.6 Sanitation 13 2.7 Motivation for Proposed Activity 13 2.8 Alternatives 13 3 LEGISLATION AND POLICY GUIDELINES CONSIDERED 15 3.1 The Constitution of South Africa (Act No. 108 of 1996) 15 3.2 The National Environmental Management Act (Act 107 of 1998) 15 3.3 Legislation for the Conservation of Natural Resources 17 3.4 Summary of Relevant Legislation 22 4 DESCRIPTION OF THE RECEIVING ENVIRONMENT 24 4.1 Introduction 24 4.2 Physical Environment 24 4.3 Biological Environment 27 4.4 Socio-Economic Environment 31 4.5 Cultural/ Historical sites 32 i 5 DESCRIPTION OF ENVIRONMENTAL ISSUES AND IMPACTS IDENTIFIED 33 5.1 Project activities affecting the environment 33 5.2 Need and Desirability of Project 34 5.3 Biophysical Impacts 35 5.4 Ecological Impacts 36 5.5 Socio-economic Impacts 37 5.6 Cumulative Impacts 37 5.7 Key Issues to be addressed in the EIA Phase 38 6 METHODOLOGY IN ASSESSING IMPACTS 39 6.1 Introduction 39 7 PLAN OF STUDY FOR EIA 42 7.1 Introduction 42 7.2 Key Issues to be addressed in the
    [Show full text]
  • Company Profile
    Access & Support Scaffolding Marine Scaffolding & Offshore Personnel Supply Entertainment & Event Platforms & Seating Thermal & Sound Insulation & Cladding Corrosion Protection & Industrial Coatings Asbestos Removal Corporate Profile Committed to Performance Excellence www.sgbcape.co.za We are Who We Are History SGB Scaffolding Systems (SGB), a division of Waco Africa in South Africa was formed in 1948 and has operated in the scaffolding business for over half a century. In February 2005, Waco Africa acquired Cape Contracts, who offered insulation, scaffolding and corrosion protection services to its customers for more than fifty years. As part of Waco Africa’s strategy to provide sustainable stakeholder value and meet our customers ever increasing needs for an integrated service, it was decided to combine these insulation and scaffolding offerings. SGB and Cape Contracts integrated into a brand new division of Waco Africa called SGB-Cape. Waco Africa is owned by Waco International and well respected black empowerment partner Bopa Moruo. We are Waco International SGB-Cape is part of Waco International, a focused equipment rental and industrial services business with operations in Africa (South Africa and other sub-Saharan African countries), Australasia (Australia and New Zealand), the United Kingdom and Chile. The Group provides services in the areas of formwork, shoring and scaffolding, insulation, painting and blasting, hydraulic and suspended access platforms, relocatable modular buildings, portable sanitation products and integrated hygiene services. Africa Africa Africa Africa Africa New Zealand New Zealand UK Australia Australia Front cover: Kusile Power Station A1 Grand Prix seating, Durban We offer a one stop service to our clients Access to arches over Moses Mabida Stadium, Durban, for 2010 World Cup What We Do Core Services SGB-Cape is well positioned to offer four lines of business namely; Access Scaffolding, Thermal Insulation and Cladding, Industrial Corrosion Protection and Asbestos Abatement.
    [Show full text]
  • Independent Power Projects in Sub-Saharan Africa Eberhard, Gratwick, Morella, and Antmann
    Independent Power Projects in Sub-Saharan Projects Africa Independent Power DIRECTIONS IN DEVELOPMENT Energy and Mining Eberhard, Gratwick, and Antmann Morella, Eberhard, Independent Power Projects in Sub-Saharan Africa Lessons from Five Key Countries Anton Eberhard, Katharine Gratwick, Elvira Morella, and Pedro Antmann Independent Power Projects in Sub-Saharan Africa DIRECTIONS IN DEVELOPMENT Energy and Mining Independent Power Projects in Sub-Saharan Africa Lessons from Five Key Countries Anton Eberhard, Katharine Gratwick, Elvira Morella, and Pedro Antmann © 2016 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved 1 2 3 4 19 18 17 16 This work is a product of the staff of The World Bank with external contributions. The findings, interpreta- tions, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved. Rights and Permissions This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) http:// creativecommons.org/licenses/by/3.0/igo.
    [Show full text]
  • Small Transformers Manufactured 2 Small Transformers Reference List Who We Are
    SMALL TRANSFORMERS MANUFACTURED 2 SMALL TRANSFORMERS REFERENCE LIST WHO WE ARE SGB-SMIT AT A GLANCE Combined, more than More than In more than 450 3,500 80 YEARS OF EXPERIENCE EMPLOYEES COUNTRIES Basis for know-how and take care of satisfied for know-why your project customers READY FOR YOUR MARKET PRODUCTS The SGB-SMIT Group manufactures transformers • large power transformers for applications worldwide. Sales and service • medium power transformers centers on all continents ensure optimum • large liquid-cooled distribution transformers processes. • liquid-cooled distribution transformers • cast resin transformers Our products meet the requirements in accordance • shunt reactors with the applicable national standards. • series reactors • phase shifters • Lahmeyer-Compactstationen® Transformers from 50 kVA up to incl. 1,200 MVA in the voltage range up to 765 kV. QUALITY MANAGEMENT TECHNOLOGIES The SGB-SMIT Group is certified in accordance with: Technologies for conventional and • DIN ISO 9001 renewable energy. • DIN ISO 14001 • DIN ISO 50001 • OHSAS 18001 Status: December 2019 SGB-SMIT GROUP SMALL TRANSFORMERS REFERENCE LIST 3 SGB-SMIT POWER MATLA A MEMBER OF THE SGB-SMIT GROUP SGB-SMIT POWER MATLA has over 70 years experience in successful design, manufacturing, testing, installation and commissioning of a full range of power and distribution transformers which include large power transformers of voltages up to 800MVA. SGB-SMIT POWER MATLA ”CUSTOM DESIGNED“ SGB-SMIT POWER MATLA (Pty) Ltd is owned by SGB-SMIT Every SGB-SMIT POWER MATLA unit is custom-made from (GmbH) and Power Matla. standardised design elements and using uniform manufacturing operations. This flexible, but well co-ordinated approach SGB-SMIT, is the largest independent and pure-play ensures the highest quality of design and construction for transformer manufacturer in the world, with headquarters in all our transformers and makes the best possible use of the Regensburg, Germany.
    [Show full text]