Cygnus” Advanced Maneuvering Space Vehicle, Which Is Designed to Meet the Stringent Safety Requirements for International Space Station (ISS) Operations

Total Page:16

File Type:pdf, Size:1020Kb

Cygnus” Advanced Maneuvering Space Vehicle, Which Is Designed to Meet the Stringent Safety Requirements for International Space Station (ISS) Operations Commercial Cargo Operations for the ISS Frank L. Culbertson Executive Vice President Low Earth Orbit Cargo Operations • Under the joint NASA / Orbital Commercial Orbital Transportation Services (COTS) program, Orbital has developed the “Cygnus” Advanced Maneuvering Space Vehicle, Which is Designed to Meet the Stringent Safety Requirements for International Space Station (ISS) Operations. • Developed through Space Act Agreement with NASA’s Commercial Crew and Cargo Program • The Cygnus Spacecraft Will Provide Cargo Resupply to the ISS Program under the Cargo Resupply Services Contract • 8 CRS Flights from 2014 to 2016 2 Leveraging Commercial Cargo to Lower Launch Costs The Cygnus vehicle is comprised of two major elements Pressurized Cargo Module (PCM) Heritage: Multi-Purpose Logistics Module (ISS); ATV Total Cargo Mass: 2,000 kg, 2700 kg Pressurized Volume: 18.7 m3, 27 m3 +X Berthing at ISS: Node 2 Common Berthing Mechanism Service Module (SM) Heritage: Orbital GEO and LEO missions Power Generation: 2 Fixed Wing Solar Arrays, 120.9” Power Output: 3.5 kW (sun-pointed) 150.1” Propellant: Dual-mode 200.2“ Compatible with Antares +Y Ø103.3” 3 © 2014 Orbital Sciences Corporation. All Rights Reserved. Current Cygnus Configurations Provide Foundation to Future Applications Cygnus is an Advanced Maneuvering Standard Space Vehicle, Designed and Certified to Standard Configuration Meet the Stringent Safety Requirements for SM Mass = 1700 Kg Configuration ISS Operations PCM Dry Mass = 1677 Kg Payload Mass = 2000 Kg Service Module (SM) Internal Volume = 18.9 m3 PCM Diameter = 3.1 m • Heritage: STAR Bus, LEO Star PCM Length = 3.9 m • Provides all vehicle utility services • Multi-string fault-tolerant computer system • Manages on-orbit maneuvering and autonomous rendezvous to the ISS • 3500 W solar array power generation and significant battery capability (20,000 W-hrs) • N2H4/NTO dual-mode propulsion system used Enhanced in Orbital communications satellites Enhanced Configuration Configuration SM Mass = 1700 Kg • 32 Thrusters in 3 Fully 6-DOF Strings PCM Dry Mass = 1995 Kg • Can be adapted for use in beyond LEO missions Payload Mass = 2700 Kg Internal Volume = 26.2 m3 and other payloads PCM Diameter = 3.1 m PCM Length = 5.1 m Pressurized Cargo Module (PCM) • Supports cargo requiring a pressurized environment • Designed and built by Thales Alenia Space with direct heritage to ISS modules Orbital Proprietary Information 4 Antares Wallops Launch Site and Operations Collaboration between NASA, Wallops, and MARS Horizontal Integration for Efficient Processing Transporter/Erector/Launcher System Designed for Safe, Rapid Transfer of LV to Pad 5 8-LSG-Generic No License-0095 6 8-LSG8-LSG-Generic-Generic No No License-0079 License-0095 Placeholder ROLL OUT TO PAD Friday 7 8-LSG-Generic No License-0095 8 8-LSG-Generic No License-0095 9 8-LSG-Generic No License-0095 Antares Launch 10 ● Cygnus Mission Control is located in the Orbital Mission Control Complex in Dulles, Virginia ● After being launched into low-Earth orbit by Antares, the Cygnus spacecraft will transport it’s cargo to the ISS. ● After the cargo delivery is complete, Cygnus is loaded with disposal material and steered to a safe destructive reentry. 11 Cygnus on Approach 12 Capturing Visiting Spacecraft Cygnus Grappled! 15 Cygnus Hatch Open 16 NLP Vaccine-21 Activation 17 Spheres Experiment 18 Ants in Space 19 Fresh Food! Fresh Fruit Delivery 20 Cygnus System Facilitates Exploration Goals Affordability - Evolutionary approach with utilization of existing space qualified systems and cargo missions to ISS, provides lower cost under tightening budget constraints Early Schedule - Utilization of existing capability provides opportunity for near-term mission support. Potential to “piggy-back” on currently planned CRS missions (8 missions through 2016) Maturity / Reliability - Cygnus heritage and redundancy provides reliability Technology Advancement - Cygnus utilization provides new technology risk reduction in flight environments Flexibility - Cygnus system elements are adaptable to evolving mission needs, goals and requirements Partnership - Involvement of Cygnus concepts in NASA Exploration assessments promotes commercial / NASA / international partnership 21 Cygnus Provides an Affordable and Near- Term Capability To Support NASA Goals Graphic Credit – Lockheed Martin 22 Cygnus Provides an Affordable and Near- Term Capability To Support NASA Goals Graphic Credit – Lockheed Martin 23 .
Recommended publications
  • ORION ORION a to Z APOGEE to Break the Frangible Joints and Separate the Fairings, Three Parachutes
    National Aeronautics and Space Administration ORION www.nasa.gov ORION A to Z APOGEE to break the frangible joints and separate the fairings, three parachutes. The next two parachutes will then VAN ALLEN RADIATION BELTS The term apogee refers to the point in an elliptical exposing the spacecraft to space. LAS - LAUNCH ABORT SYSTEM deploy and open. Once the spacecraft slows to around The Van Allen Belts are belts of plasma trapped by orbit when a spacecraft is farthest from the Earth. Orion’s Launch Abort System (LAS) is designed to 100 mph, the three main parachutes will then deploy the Earth’s magnetic field that shield the surface of During Exploration Flight Test-1, Orion’s flight path will GUPPY propel the crew module away from an emergency on using three pilot parachutes and slow the spacecraft the Earth from much of the radiation in space. During take it to an apogee of 3,600 miles. Just how high is The Super Guppy is a special airplane capable of the launch pad or during initial takeoff, moving the to around 20 mph for splashdown in the Pacific Ocean. Exploration Flight Test-1, Orion will pass within the Van that? A commercial airliner flies about 8 miles above transporting up to 26 tons in its cargo compartment crew away from danger. Orion’s LAS has three new When fully deployed, the canopies of three main Allen Radiation Belts and will spend more time in the the Earth’s surface, so Orion’s flight is 450 times farther measuring 25 feet tall, 25 feet wide, and 111 feet long.
    [Show full text]
  • The Orbital-Hub: Low Cost Platform for Human Spaceflight After ISS
    67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016. Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved. IAC-16, B3,1,9,x32622 The Orbital-Hub: Low Cost Platform for Human Spaceflight after ISS O. Romberga, D. Quantiusa, C. Philpota, S. Jahnkea, W. Seboldta, H. Dittusb, S. Baerwaldeb, H. Schlegelc, M. Goldd, G. Zamkad, R. da Costae, I. Retate, R. Wohlgemuthe, M. Langee a German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany, [email protected] b German Aerospace Center (DLR), Executive Board, Space Research and Technology, Cologne, Germany, c European Space Agency (ESA) Contractor, Johnson Space Center, Houston, USA, d Bigelow Aerospace, Las Vegas / Washington, USA, e Airbus DS, Bremen, Germany Abstract The International Space Station ISS demonstrates long-term international cooperation between many partner governments as well as significant engineering and programmatic achievement mostly as a compromise of budget, politics, administration and technological feasibility. A paradigm shift to use the ISS more as an Earth observation platform and to more innovation and risk acceptance can be observed in the development of new markets by shifting responsibilities to private entities and broadening research disciplines, demanding faster access by users and including new launcher and experiment facilitator companies. A review of worldwide activities shows that all spacefaring nations are developing their individual programmes for the time after ISS. All partners are basically still interested in LEO and human spaceflight as discussed by the ISECG. ISS follow-on activities should comprise clear scientific and technological objectives combined with the long term view on space exploration.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Rex D. Hall and David J. Shayler
    Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54
    [Show full text]
  • Space Rescue Ensuring the Safety of Manned Space¯Ight David J
    Space Rescue Ensuring the Safety of Manned Space¯ight David J. Shayler Space Rescue Ensuring the Safety of Manned Spaceflight Published in association with Praxis Publishing Chichester, UK David J. Shayler Astronautical Historian Astro Info Service Halesowen West Midlands UK Front cover illustrations: (Main image) Early artist's impression of the land recovery of the Crew Exploration Vehicle. (Inset) Artist's impression of a launch abort test for the CEV under the Constellation Program. Back cover illustrations: (Left) Airborne drop test of a Crew Rescue Vehicle proposed for ISS. (Center) Water egress training for Shuttle astronauts. (Right) Beach abort test of a Launch Escape System. SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, B.Sc., M.Sc., Ph.D. ISBN 978-0-387-69905-9 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2008934752 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2009 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a speci®c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • America's Greatest Projects and Their Engineers - VII
    America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Cygnus-Derived Exploration from ISS to the Moon and Beyond
    Cygnus-derived Exploration from ISS to the Moon and Beyond Mike Fuller Future In-Space Operations (FISO) Director, Business Development Propulsion Systems 22 April 2020 Derek M. Hodgins Director, Business Development Human Exploration 1 Introduction to Northrop Grumman 2 Northrop Grumman Space Systems • Northrop Grumman Space Systems (NGSS) brings together NG’s comprehensive space capabilities from its former Aerospace Systems, Mission Systems, and Innovation Systems sectors • Headquarters: Dulles, Virginia (Washington, D.C., area) • Approximately 23,000 Employees • Facilities in 48 states and several overseas locations • NGSS is an industry leading provider of end-to-end space and launch systems and capabilities serving national security, civil and commercial customers. • NGSS Launch Systems is providing the five segment boosters for NASA's Space Launch System (SLS) and the main launch-abort motor and the attitude control motor for the Orion Crew Vehicle’s Launch Abort System (LAS). • In addition NG propulsion systems are employed in the company's Pegasus, Minotaur, Antares and OmegA rockets as well as in Delta IV and commercial launch vehicles. • NGSS Tactical Space covers Civil & Commercial Satellites (CCS) and National Security Space, including CCS’s NASA Human Exploration and Operations (HEO) and Science, and Commercial Satellites 3 Cygnus • NG is the prime contractor and developer of the Cygnus spacecraft, providing logistics support to the International Space Station (ISS) under NASA’s Cargo Resupply Service (CRS) contract, including commercial and science payloads – Developed in an innovative Public-Private Partnership with NASA, over 50% of its development was privately funded • Cygnus is designed to be an advanced maneuvering spacecraft, incorporating elements drawn from Northrop Grumman and its partners’ existing, flight-proven spacecraft technologies.
    [Show full text]
  • CSM15 Launch Escape System
    LAUNCH ESCAPE PITCH CONTROL MOTO TOWER JETTISON MOTOR LAUNCH ESCAPE MOTO CANARD LAUNCH ESCAPE MOTOR ACTUATOR THRUST ALIGNMENT FITIING STU OS & POWER SYSTEMS & INSTRUMENTATION WIRE HARNESS FRANGIBLE LAUNCH ESCAPE TOWER ELECTRICAL DISCONNECT FITIINGS P-186 BOOST PROTECTIVE COVER (APEX SECTION) Launch escape subsystem The launch escape subsystem will take the com­ nozzles and at the bottom to the command module mand module containing the astronauts away from by means of an explosive connection. the launch vehicle in case of an emergency on the pad or shortly after launch. The subsystem carries A boost protective cover is attached to the tower the CM to a sufficient height and to the side, away and completely covers the command module. This from the launch vehicle, so that the earth landing cover protects the command module from the subsystem can operate. rocket exhaust and also from the heating generated by launch vehicle boost through the atmosphere. It The subsystem looks like a large rocket con­ remains attached to the tower and is carried away nected to the command module by a lattice-work when the launch escape assembly is jettisoned. tower. It is 33 feet long and weighs about 8,000 pounds. The maximum diameter of the launch The subsystem is activated automatically by the escape assembly is four feet. emergency detection system in the first 100 seconds or manually by the astronauts at any time The forward or rocket section of the subsystem from the pad to jettison altitude. With the Saturn is cylindrical and houses three solid-propellant V, the subsystem is jettisoned at about 295,000 rocket motors and a ballast compartment topped by feet, or about 30 seconds after ignition of the a nose cone containing instruments.
    [Show full text]
  • Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism
    Loyola of Los Angeles International and Comparative Law Review Volume 36 Number 2 Fall 2014 Article 2 Fall 11-1-2014 Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism Caley Albert Follow this and additional works at: https://digitalcommons.lmu.edu/ilr Part of the Law Commons Recommended Citation Caley Albert, Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism, 36 Loy. L.A. Int'l & Comp. L. Rev. 233 (2014). Available at: https://digitalcommons.lmu.edu/ilr/vol36/iss2/2 This Article is brought to you for free and open access by the Law Reviews at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Loyola of Los Angeles International and Comparative Law Review by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. ALBERT_FINAL_FOR_PUB 10/14/2014 2:19 PM Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism CALEY ALBERT I. INTRODUCTION In the beginning, space exploration and the use of space were opportunities exclusively reserved for national governments.1 However, in the twenty-first century, this statement is no longer true as commercial companies begin to take center stage in a field that was exclusively reserved for governments. An article written in 1984 states that “[t]he recent development of the United States space shuttle marks a new era in the commercial utilization of outer space. Although the shuttle is currently being operated by the federal government, the new space transportation system will result in greater use of the space by private industries.”2 While the author may have predicted this event two decades early, his prediction was nonetheless accurate.
    [Show full text]
  • An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions
    An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions Edgar Zapataa National Aeronautics and Space Administration, Kennedy Space Center, FL, 32899 In May 2012, the SpaceX Dragon spacecraft became the first commercial spacecraft to arrive at the International Space Station (ISS). This achievement, and that of other partners in the NASA Commercial Orbital Transportation Services (COTS) program, would surface difficult questions about NASA’s other more traditional development processes and their traditionally high costs. The cost of the non-traditional COTS public private partnership for the development of spacecraft and launch systems, and later the prices for services to deliver cargo to the ISS, would be praised or criticized by one measure of cost versus another, often with little regard for consistency or data. The goal here is to do the math, to bring rigorous life cycle cost (LCC) analysis into discussions about COTS program costs. We gather publicly available cost data, review the data for credibility, check for consistency among sources, and rigorously define and analyze specific cost metrics. This paper shows quantitatively that the COTS development and later the operational Commercial Resupply Services (CRS) are significant advances in affordability by any measure. To understand measureable improvements in context, we also create and analyze an apples-to-apples scenario where the Space Shuttle would have fulfilled the ISS cargo requirement versus the COTS/CRS launchers and spacecraft. Alternately, we review valid questions that arise where measures or comparisons are not easy or break down, with no quantitative path to clear conclusions.
    [Show full text]